STM32MP1xx boards

This is a quick instruction for setup STMicroelectronics STM32MP1xx boards.

Further information can be found in STMicroelectronics STM32 WIKI.

Supported devices

U-Boot supports all the STMicroelectronics MPU with the associated boards

  • STMP32MP15x SoCs:

  • STM32MP157

  • STM32MP153

  • STM32MP151

  • STMP32MP13x SoCs:

  • STM32MP135

  • STM32MP133

  • STM32MP131

Everything is supported in Linux but U-Boot is limited to the boot device:

  1. UART

  2. SD card/MMC controller (SDMMC)

  3. NAND controller (FMC)

  4. NOR controller (QSPI)

  5. USB controller (OTG DWC2)

  6. Ethernet controller

And the necessary drivers

  1. I2C

  2. STPMIC1 (PMIC and regulator)

  3. Clock, Reset, Sysreset

  4. Fuse (BSEC)

  5. OP-TEE

  6. ETH

  7. USB host

  8. WATCHDOG

  9. RNG

  10. RTC

STM32MP15x

The STM32MP15x is a Cortex-A7 MPU aimed at various applications.

It features:

  • Dual core Cortex-A7 application core (Single on STM32MP151)

  • 2D/3D image composition with GPU (only on STM32MP157)

  • Standard memories interface support

  • Standard connectivity, widely inherited from the STM32 MCU family

  • Comprehensive security support

  • Cortex M4 coprocessor

Each line comes with a security option (cryptography & secure boot) and a Cortex-A frequency option:

  • A : Cortex-A7 @ 650 MHz

  • C : Secure Boot + HW Crypto + Cortex-A7 @ 650 MHz

  • D : Cortex-A7 @ 800 MHz

  • F : Secure Boot + HW Crypto + Cortex-A7 @ 800 MHz

Currently the following boards are supported:

  • stm32mp157a-dk1.dts

  • stm32mp157c-dk2.dts

  • stm32mp157c-ed1.dts

  • stm32mp157c-ev1.dts

  • stm32mp15xx-dhcor-avenger96.dts

The SCMI variant of each board is supported by a specific “scmi” device tree:
  • stm32mp157a-dk1-scmi.dts

  • stm32mp157c-dk2-scmi.dts

  • stm32mp157c-ed1-scmi.dts

  • stm32mp157c-ev1-scmi.dts

SCMI variant is used only with stm32mp15_defconfig, when the resources are secured with RCC_TZCR.TZEN=1 in OP-TEE. The access to these reset and clock resources are provided by OP-TEE and the associated SCMI services.

STM32MP13x

The STM32MP13x is a single Cortex-A7 MPU aimed at various applications.

Currently the following boards are supported:

  • stm32mp135f-dk.dts

Boot Sequences

2 boot configurations are supported with:

ROM code

FSBL

SSBL

OS

First Stage Bootloader

Second Stage Bootloader

Linux Kernel

embedded RAM

DDR

TrustZone

secure monitor

The trusted boot chain is recommended with:

  • FSBL = TF-A BL2

  • Secure monitor = OP-TEE

  • SSBL = U-Boot

It is the only supported boot chain for STM32MP13x family.

The Trusted boot chain with TF-A

defconfig_file :
  • stm32mp15_defconfig and stm32mp13_defconfig (for TF-A with FIP support)

  • stm32mp15_trusted_defconfig (for TF-A without FIP support)

ROM code

FSBL

SSBL

OS

Trusted Firmware-A (TF-A)

U-Boot

Linux

TrustZone

secure monitor = SPMin or OP-TEE

TF-A and OP-TEE are 2 separate projects, with their git repository; they are compiled separately.

TF-A (BL2) initialize the DDR and loads the next stage binaries from a FIP file:
  • BL32: a secure monitor BL32 = SPMin provided by TF-A or OP-TEE : performs a full initialization of Secure peripherals and provides service to normal world

  • BL33: a non-trusted firmware = U-Boot, running in normal world and uses the secure monitor to access to secure resources.

  • HW_CONFIG: The hardware configuration file = the U-Boot device tree

The scmi variant of each device tree is only support with OP-TEE as secure monitor, with stm32mp15_defconfig.

The Basic boot chain with SPL (for STM32MP15x)

defconfig_file :
  • stm32mp15_basic_defconfig

ROM code

FSBL

SSBL

OS

U-Boot SPL

U-Boot

Linux

TrustZone

PSCI from U-Boot

SPL has limited security initialization.

U-Boot is running in secure mode and provide a secure monitor to the kernel with only PSCI support (Power State Coordination Interface defined by ARM).

Warning

This alternate basic boot chain with SPL is not supported/promoted by STMicroelectronics to make product.

Device Tree

All the STM32MP15x and STM32MP13x boards supported by U-Boot use the same generic board stm32mp1 which supports all the bootable devices.

Each STMicroelectronics board is only configured with the associated device tree.

STM32MP15x device Tree Selection

The supported device trees for STM32MP15x (stm32mp15_trusted_defconfig and stm32mp15_basic_defconfig) are:

  • ev1: eval board with pmic stpmic1 (ev1 = mother board + daughter ed1)

    • stm32mp157c-ev1

  • ed1: daughter board with pmic stpmic1

    • stm32mp157c-ed1

  • dk1: Discovery board

    • stm32mp157a-dk1

  • dk2: Discovery board = dk1 with a BT/WiFI combo and a DSI panel

    • stm32mp157c-dk2

  • avenger96: Avenger96 board from Arrow Electronics based on DH Elec. DHCOR SoM

    • stm32mp15xx-dhcor-avenger96

STM32MP13x device Tree Selection

The supported device trees for STM32MP13x (stm32mp13_defconfig) are:

  • dk: Discovery board

    • stm32mp135f-dk

Build Procedure

  1. Install the required tools for U-Boot

    • install package needed in U-Boot makefile (libssl-dev, swig, libpython-dev…)

    • install ARMv7 toolchain for 32bit Cortex-A (from Linaro, from SDK for STM32MP15x, or any crosstoolchains from your distribution) (you can use any gcc cross compiler compatible with U-Boot)

  2. Set the cross compiler:

    # export CROSS_COMPILE=/path/to/toolchain/arm-linux-gnueabi-
    
  3. Select the output directory (optional):

    # export KBUILD_OUTPUT=/path/to/output
    

    for example: use one output directory for each configuration:

    # export KBUILD_OUTPUT=stm32mp13
    # export KBUILD_OUTPUT=stm32mp15
    # export KBUILD_OUTPUT=stm32mp15_trusted
    # export KBUILD_OUTPUT=stm32mp15_basic
    

    you can build outside of code directory:

    # export KBUILD_OUTPUT=../build/stm32mp15
    
  4. Configure U-Boot:

    # make <defconfig_file>
    

    with <defconfig_file>:

    • For trusted boot mode : - For STM32MP13x: stm32mp13_defconfig - For STM32MP15x: stm32mp15_defconfig or stm32mp15_trusted_defconfig

    • For STM32MP15x basic boot mode: stm32mp15_basic_defconfig

  5. Configure the device-tree and build the U-Boot image:

    # make DEVICE_TREE=<name> all
    

    Examples:

  1. trusted boot with FIP on STM32MP15x ev1:

    # export KBUILD_OUTPUT=stm32mp15
    # make stm32mp15_defconfig
    # make DEVICE_TREE=stm32mp157c-ev1-scmi all
    

or without SCMI support

# export KBUILD_OUTPUT=stm32mp15 # make stm32mp15_defconfig # make DEVICE_TREE=stm32mp157c-ev1 all

  1. trusted boot on STM32MP13x discovery board:

    # export KBUILD_OUTPUT=stm32mp13
    # make stm32mp13_defconfig
    # make DEVICE_TREE=stm32mp135f-dk all
    

DEVICE_TEE selection is optional as stm32mp135f-dk is the default board of the defconfig:

# make stm32mp13_defconfig
# make all
  1. basic boot on STM32MP15x ev1:

    # export KBUILD_OUTPUT=stm32mp15_basic
    # make stm32mp15_basic_defconfig
    # make DEVICE_TREE=stm32mp157c-ev1 all
    
  2. basic boot on STM32MP15x ed1:

    # export KBUILD_OUTPUT=stm32mp15_basic
    # make stm32mp15_basic_defconfig
    # make DEVICE_TREE=stm32mp157c-ed1 all
    
  3. basic boot on STM32MP15x dk1:

    # export KBUILD_OUTPUT=stm32mp15_basic
    # make stm32mp15_basic_defconfig
    # make DEVICE_TREE=stm32mp157a-dk1 all
    
  4. basic boot on STM32MP15x avenger96:

    # export KBUILD_OUTPUT=stm32mp15_basic
    # make stm32mp15_basic_defconfig
    # make DEVICE_TREE=stm32mp15xx-dhcor-avenger96 all
    
  1. U-Boot Output files

    So in the output directory (selected by KBUILD_OUTPUT), you can found the needed U-Boot files:

    • stm32mp13_defconfig = u-boot-nodtb.bin and u-boot.dtb

    • stm32mp15_defconfig = u-boot-nodtb.bin and u-boot.dtb

    • stm32mp15_trusted_defconfig = u-boot.stm32

    • stm32mp15_basic_defconfig

      • FSBL = spl/u-boot-spl.stm32

      • SSBL = u-boot.img (without CONFIG_SPL_LOAD_FIT) or

        u-boot.itb (with CONFIG_SPL_LOAD_FIT=y)

  2. TF-A compilation

    This step is required only for Trusted boot (stm32mp15_defconfig and stm32mp15_trusted_defconfig); see OP-TEE and TF-A documentation for build commands.

    • For TF-A with FIP support: stm32mp15_defconfig

      • with OP-TEE support, compile the OP-TEE to generate the binary included in FIP

      • after TF-A compilation, the used files are:

        • TF-A BL2 => FSBL = tf-a.stm32

        • FIP => fip.bin

          FIP file includes the 2 files given in arguments of TF-A compilation:

        • BL33=u-boot-nodtb.bin

        • BL33_CFG=u-boot.dtb

      You can also update a existing FIP after U-Boot compilation with fiptool, a tool provided by TF-A:

      # fiptool update --nt-fw u-boot-nodtb.bin --hw-config u-boot.dtb fip-stm32mp157c-ev1.bin
      
    • For TF-A without FIP support : stm32mp15_trusted_defconfig SPMin is used and the used files are:

      • FSBL = tf-a.stm32 (provided by TF-A compilation, contening BL2 and BL32 = SPMin)

      • SSBL = u-boot.stm32 used instead of fip.bin in next chapters

  3. The bootloaders files

  • The ROM code expects FSBL binaries with STM32 image header = tf-a.stm32 or u-boot-spl.stm32

According the FSBL / the boot mode:

  • TF-A expect a FIP binary = fip.bin, including the OS monitor (SPMin or OP-TEE) and the U-Boot binary + device tree

    or, without FIP support, binaries with STM32 image header: U-Boot = u-boot.stm32 and eventually OP-TEE files (tee-header.stm32, tee-pageable.stm32, tee-pager.stm32)

  • SPL expects SSBL = U-Boot with uImage header = u-boot.img or FIT = u-boot.itb.

Switch Setting for Boot Mode

You can select the boot mode, on the board with one switch, to select the boot pin values = BOOT0, BOOT1, BOOT2

Boot Mode

BOOT2

BOOT1

BOOT0

Recovery

0

0

0

NOR

0

0

1

eMMC

0

1

0

NAND

0

1

1

Reserved

1

0

0

SD-Card

1

0

1

Recovery

1

1

0

SPI-NAND

1

1

1

  • on the STM32MP15x daughter board ed1 = MB1263 with the switch SW1

  • on STM32MP15x Avenger96 with switch S3 (NOR and SPI-NAND are not applicable)

  • on board STM32MP15x DK1/DK2 with the switch SW1 = BOOT0, BOOT2 with only 2 pins available (BOOT1 is forced to 0 and NOR not supported), the possible value becomes:

    Boot Mode

    BOOT2

    BOOT0

    Recovery

    0

    0

    NOR (NA)

    0

    1

    Reserved

    1

    0

    SD-Card

    1

    1

Recovery is a boot from serial link (UART/USB) and it is used with STM32CubeProgrammer tool to load executable in RAM and to update the flash devices available on the board (NOR/NAND/eMMC/SD card).

The communication between HOST and board is based on

  • for UARTs : the uart protocol used with all MCU STM32

  • for USB : based on USB DFU 1.1 (without the ST extensions used on MCU STM32)

Prepare an SD card

The minimal requirements for STMP32MP15x and STM32MP13x boot up to U-Boot are:

  • GPT partitioning (with gdisk or with sgdisk)

  • 2 fsbl partitions, named “fsbl1” and “fsbl2”, size at least 256KiB

  • one partition named “fip” for FIP or U-Boot (TF-A search the “fip” partition and SPL search the 3th partition, because CONFIG_SYS_MMCSD_RAW_MODE_U_BOOT_PARTITION=3)

The 2 fsbl partitions have the same content and are present to guarantee a fail-safe update of FSBL; fsbl2 can be omitted if this ROM code feature is not required.

Without FIP support in TF-A, the 3rd partition “fip” for u-boot.stm32 must be named “ssbl”.

Then the minimal GPT partition is:

For TF-A with FIP support:

Num

Name

Size

Content

1

fsbl1

256 KiB

TF-A BL2 (tf-a.stm32)

2

fsbl2

256 KiB

TF-A BL2 (tf-a.stm32)

3

fip

4MB

fip.bin

4

<any>

<any>

Rootfs

or:

Num

Name

Size

Trusted boot content

Basic boot content

1

fsbl1

256 KiB

TF-A BL2 (tf-a.stm32)

SPL (u-boot-spl.stm32)

2

fsbl2

256 KiB

TF-A BL2 (tf-a.stm32)

SPL (u-boot-spl.stm32)

3

ssbl

2MB

U-Boot (u-boot.stm32)

U-Boot (u-boot.img)

4

<any>

<any>

Rootfs

And the 4th partition (Rootfs) is marked bootable with a file extlinux.conf following the Generic Distribution feature (see Generic Distro Configuration Concept for use).

The size of fip or ssbl partition must be enough for the associated binary file, 4MB and 2MB are default values.

According the used card reader select the correct block device (for example /dev/sdx or /dev/mmcblk0), in the next example, it is /dev/mmcblk0

For example:

  1. remove previous formatting:

    # sgdisk -o /dev/<SD card dev>
    
  2. create minimal image for FIP

    For FIP support in TF-A:

    # sgdisk --resize-table=128 -a 1 \
    -n 1:34:545         -c 1:fsbl1 \
    -n 2:546:1057               -c 2:fsbl2 \
    -n 3:1058:9249              -c 3:fip \
    -n 4:9250:                  -c 4:rootfs -A 4:set:2 \
    -p /dev/<SD card dev>
    

    With gpt table with 128 entries an the partition 4 marked bootable (bit 2).

    For basic boot mode or without FIP support in TF-A:

    # sgdisk --resize-table=128 -a 1 \
    -n 1:34:545         -c 1:fsbl1 \
    -n 2:546:1057               -c 2:fsbl2 \
    -n 3:1058:5153              -c 3:ssbl \
    -n 4:5154:              -c 4:rootfs -A 4:set:2 \
    -p /dev/<SD card dev>
    
  3. copy the FSBL (2 times) and SSBL file on the correct partition. in this example in partition 1 to 3

    for trusted boot:

    # dd if=tf-a.stm32 of=/dev/mmcblk0p1
    # dd if=tf-a.stm32 of=/dev/mmcblk0p2
    # dd if=fip.bin of=/dev/mmcblk0p3
      OR
      dd if=u-boot.stm32 of=/dev/mmcblk0p3 # Without FIT support
    

    for basic boot mode : <SD card dev> = /dev/mmcblk0:

    # dd if=u-boot-spl.stm32 of=/dev/mmcblk0p1
    # dd if=u-boot-spl.stm32 of=/dev/mmcblk0p2
    # dd if=u-boot.img of=/dev/mmcblk0p3 # Without CONFIG_SPL_LOAD_FIT
      OR
      dd if=u-boot.itb of=/dev/mmcblk0p3 # With CONFIG_SPL_LOAD_FIT=y
    

To boot from SD card, select BootPinMode = 1 0 1 and reset.

Prepare eMMC

You can use U-Boot to copy binary in eMMC.

In the next example, you need to boot from SD card and the images (tf-a.stm32, fip.bin / u-boot-spl.stm32, u-boot.img for systems without CONFIG_SPL_LOAD_FIT or u-boot.itb for systems with CONFIG_SPL_LOAD_FIT=y) are presents on SD card (mmc 0) in ext4 partition 4 (bootfs)

To boot from SD card, select BootPinMode = 1 0 1 and reset.

Then you update the eMMC with the next U-Boot command :

  1. prepare GPT on eMMC, example with 3 partitions, fip, bootfs and roots:

    # setenv emmc_part "name=fip,size=4MiB;name=bootfs,type=linux,bootable,size=64MiB;name=rootfs,type=linux,size=512"
    # gpt write mmc 1 ${emmc_part}
    
  2. copy FSBL, TF-A or SPL, on first eMMC boot partition (SPL max size is 256kB, with LBA 512, 0x200):

    # ext4load mmc 0:4 0xC0000000 tf-a.stm32
    or
    # ext4load mmc 0:4 0xC0000000 u-boot-spl.stm32
    
    # mmc dev 1
    # mmc partconf 1 1 1 1
    # mmc write ${fileaddr} 0 200
    # mmc partconf 1 1 1 0
    
  3. copy SSBL, FIP or U-Boot binary, in first GPT partition of eMMC:

    # ext4load mmc 0:4 0xC0000000 fip.bin
    or
    # ext4load mmc 0:4 0xC0000000 u-boot.img # Without CONFIG_SPL_LOAD_FIT
    or
    # ext4load mmc 0:4 0xC0000000 u-boot.itb # With CONFIG_SPL_LOAD_FIT=y
    
    
    # mmc dev 1
    # part start mmc 1 1 partstart
    # mmc write ${fileaddr} ${partstart} ${filesize}
    

To boot from eMMC, select BootPinMode = 0 1 0 and reset.

MAC Address

Please read doc/README.enetaddr for the implementation guidelines for mac id usage. Basically, environment has precedence over board specific storage.

For STMicroelectronics board, it is retrieved in:

  • STM32MP15x OTP:

    • OTP_57[31:0] = MAC_ADDR[31:0]

    • OTP_58[15:0] = MAC_ADDR[47:32]

  • STM32MP13x OTP:

  • OTP_57[31:0] = MAC_ADDR0[31:0]

  • OTP_58[15:0] = MAC_ADDR0[47:32]

  • OTP_58[31:16] = MAC_ADDR1[15:0]

  • OTP_59[31:0] = MAC_ADDR1[47:16]

To program a MAC address on virgin STM32MP15x OTP words above, you can use the fuse command on bank 0 to access to internal OTP and lock them:

In the next example we are using the 2 OTPs used on STM32MP15x.

Prerequisite: check if a MAC address isn’t yet programmed in OTP

  1. check OTP: their value must be equal to 0:

    STM32MP> fuse sense 0 57 2
    Sensing bank 0:
    Word 0x00000039: 00000000 00000000
    
  2. check environment variable:

    STM32MP> env print ethaddr
    ## Error: "ethaddr" not defined
    
  3. check lock status of fuse 57 & 58 (at 0x39, 0=unlocked, 0x40000000=locked):

    STM32MP> fuse sense 0 0x10000039 2
    Sensing bank 0:
       Word 0x10000039: 00000000 00000000
    

Example to set mac address “12:34:56:78:9a:bc”

  1. Write OTP:

    STM32MP> fuse prog -y 0 57 0x78563412 0x0000bc9a
    
  2. Read OTP:

    STM32MP> fuse sense 0 57 2
    Sensing bank 0:
    Word 0x00000039: 78563412 0000bc9a
    
  3. Lock OTP:

    STM32MP> fuse prog 0 0x10000039 0x40000000 0x40000000
    
    STM32MP> fuse sense 0 0x10000039 2
    Sensing bank 0:
       Word 0x10000039: 40000000 40000000
    
  4. next REBOOT, in the trace:

    ### Setting environment from OTP MAC address = "12:34:56:78:9a:bc"
    
  5. check env update:

    STM32MP> env print ethaddr
    ethaddr=12:34:56:78:9a:bc
    

Warning

This command can’t be executed twice on the same board as OTP are protected. It is already done for the board provided by STMicroelectronics.

Coprocessor firmware on STM32MP15x

U-Boot can boot the coprocessor before the kernel (coprocessor early boot).

  1. Manuallly by using rproc commands (update the bootcmd)

    Configurations:

    # env set name_copro "rproc-m4-fw.elf"
    # env set dev_copro 0
    # env set loadaddr_copro 0xC1000000
    

    Load binary from bootfs partition (number 4) on SD card (mmc 0):

    # ext4load mmc 0:4 ${loadaddr_copro} ${name_copro}
    

    => ${filesize} variable is updated with the size of the loaded file.

    Start M4 firmware with remote proc command:

    # rproc init
    # rproc load ${dev_copro} ${loadaddr_copro} ${filesize}
    # rproc start ${dev_copro}"00270033
    
  2. Automatically by using FIT feature and generic DISTRO bootcmd

    see examples in the board stm32mp1 directory: fit_copro_kernel_dtb.its

    Generate FIT including kernel + device tree + M4 firmware with cfg with M4 boot:

    $> mkimage -f fit_copro_kernel_dtb.its fit_copro_kernel_dtb.itb
    

    Then using DISTRO configuration file: see extlinux.conf to select the correct configuration:

    • stm32mp157c-ev1-m4

    • stm32mp157c-dk2-m4

DFU support

The DFU is supported on ST board.

The env variable dfu_alt_info is automatically build, and all the memory present on the ST boards are exported.

The dfu mode is started by the command:

STM32MP> dfu 0

On EV1 board, booting from SD card, without OP-TEE:

STM32MP> dfu 0 list
DFU alt settings list:
dev: RAM alt: 0 name: uImage layout: RAM_ADDR
dev: RAM alt: 1 name: devicetree.dtb layout: RAM_ADDR
dev: RAM alt: 2 name: uramdisk.image.gz layout: RAM_ADDR
dev: eMMC alt: 3 name: mmc0_fsbl1 layout: RAW_ADDR
dev: eMMC alt: 4 name: mmc0_fsbl2 layout: RAW_ADDR
dev: eMMC alt: 5 name: mmc0_fip layout: RAW_ADDR
dev: eMMC alt: 6 name: mmc0_bootfs layout: RAW_ADDR
dev: eMMC alt: 7 name: mmc0_vendorfs layout: RAW_ADDR
dev: eMMC alt: 8 name: mmc0_rootfs layout: RAW_ADDR
dev: eMMC alt: 9 name: mmc0_userfs layout: RAW_ADDR
dev: eMMC alt: 10 name: mmc1_boot1 layout: RAW_ADDR
dev: eMMC alt: 11 name: mmc1_boot2 layout: RAW_ADDR
dev: eMMC alt: 12 name: mmc1_fip layout: RAW_ADDR
dev: eMMC alt: 13 name: mmc1_bootfs layout: RAW_ADDR
dev: eMMC alt: 14 name: mmc1_vendorfs layout: RAW_ADDR
dev: eMMC alt: 15 name: mmc1_rootfs layout: RAW_ADDR
dev: eMMC alt: 16 name: mmc1_userfs layout: RAW_ADDR
dev: MTD alt: 17 name: nor0 layout: RAW_ADDR
dev: MTD alt: 18 name: nor1 layout: RAW_ADDR
dev: MTD alt: 19 name: nand0 layout: RAW_ADDR
dev: VIRT alt: 20 name: OTP layout: RAW_ADDR
dev: VIRT alt: 21 name: PMIC layout: RAW_ADDR

All the supported device are exported for dfu-util tool:

$> dfu-util -l
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=21, name="PMIC", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=20, name="OTP", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=19, name="nand0", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=18, name="nor1", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=17, name="nor0", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=16, name="mmc1_userfs", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=15, name="mmc1_rootfs", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=14, name="mmc1_vendorfs", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=13, name="mmc1_bootfs", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=12, name="mmc1_fip", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=11, name="mmc1_boot2", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=10, name="mmc1_boot1", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=9, name="mmc0_userfs", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=8, name="mmc0_rootfs", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=7, name="mmc0_vendorfs", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=6, name="mmc0_bootfs", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=5, name="mmc0_fip", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=4, name="mmc0_fsbl2", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=3, name="mmc0_fsbl1", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=2, name="uramdisk.image.gz", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=1, name="devicetree.dtb", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=0, name="uImage", serial="002700333338511934383330"

You can update the boot device:

  • SD card (mmc0):

    $> dfu-util -d 0483:5720 -a 3 -D tf-a-stm32mp157c-ev1.stm32
    $> dfu-util -d 0483:5720 -a 4 -D tf-a-stm32mp157c-ev1.stm32
    $> dfu-util -d 0483:5720 -a 5 -D fip-stm32mp157c-ev1.bin
    $> dfu-util -d 0483:5720 -a 6 -D st-image-bootfs-openstlinux-weston-stm32mp1.ext4
    $> dfu-util -d 0483:5720 -a 7 -D st-image-vendorfs-openstlinux-weston-stm32mp1.ext4
    $> dfu-util -d 0483:5720 -a 8 -D st-image-weston-openstlinux-weston-stm32mp1.ext4
    $> dfu-util -d 0483:5720 -a 9 -D st-image-userfs-openstlinux-weston-stm32mp1.ext4
    
  • EMMC (mmc1):

    $> dfu-util -d 0483:5720 -a 10 -D tf-a-stm32mp157c-ev1.stm32
    $> dfu-util -d 0483:5720 -a 11 -D tf-a-stm32mp157c-ev1.stm32
    $> dfu-util -d 0483:5720 -a 12 -D fip-stm32mp157c-ev1.bin
    $> dfu-util -d 0483:5720 -a 13 -D st-image-bootfs-openstlinux-weston-stm32mp1.ext4
    $> dfu-util -d 0483:5720 -a 14 -D st-image-vendorfs-openstlinux-weston-stm32mp1.ext4
    $> dfu-util -d 0483:5720 -a 15 -D st-image-weston-openstlinux-weston-stm32mp1.ext4
    $> dfu-util -d 0483:5720 -a 16 -D st-image-userfs-openstlinux-weston-stm32mp1.ext4
    
  • you can also dump the OTP and the PMIC NVM with:

    $> dfu-util -d 0483:5720 -a 19 -U otp.bin
    $> dfu-util -d 0483:5720 -a 20 -U pmic.bin
    

When the board is booting for nor0 or nand0, only the MTD partition on the boot devices are available, for example:

  • NOR (nor0 = alt 20, nor1 = alt 26) & NAND (nand0 = alt 27) :

    $> dfu-util -d 0483:5720 -a 21 -D tf-a-stm32mp157c-ev1.stm32 $> dfu-util -d 0483:5720 -a 22 -D tf-a-stm32mp157c-ev1.stm32 $> dfu-util -d 0483:5720 -a 23 -D fip-stm32mp157c-ev1.bin $> dfu-util -d 0483:5720 -a 28 -D st-image-weston-openstlinux-weston-stm32mp1_nand_4_256_multivolume.ubi

  • NAND (nand0 = alt 21):

    $> dfu-util -d 0483:5720 -a 22 -D tf-a-stm32mp157c-ev1.stm32
    $> dfu-util -d 0483:5720 -a 23 -D fip-stm32mp157c-ev1.bin
    $> dfu-util -d 0483:5720 -a 24 -D fip-stm32mp157c-ev1.bin
    $> dfu-util -d 0483:5720 -a 25 -D st-image-weston-openstlinux-weston-stm32mp1_nand_4_256_multivolume.ubi
    

References

STM32 Arm® Cortex®-based MPUs user guide

TF-A = The Trusted Firmware-A project provides a reference implementation of secure world software for Armv7-A and Armv8-A class processors

OP-TEE = an open source Trusted Execution Environment (TEE) implementing the Arm TrustZone technology