

The U-Boot Documentation

This is the top level of the U-Boot’s documentation tree. U-Boot
documentation, like the U-Boot itself, is very much a work in progress;
that is especially true as we work to integrate our many scattered
documents into a coherent whole. Please note that improvements to the
documentation are welcome; join the U-Boot list at http://lists.denx.de
if you want to help out.

User-oriented documentation

The following manuals are written for users of the U-Boot - those who are
trying to get it to work optimally on a given system.

	Build U-Boot
	Host tools

Unified Extensible Firmware (UEFI)

U-Boot provides an implementation of the UEFI API allowing to run UEFI
compliant software like Linux, GRUB, and iPXE. Furthermore U-Boot itself
can be run an UEFI payload.

	Unified Extensible Firmware (UEFI)
	UEFI on U-Boot

	U-Boot on EFI

	iSCSI booting with U-Boot and iPXE

Driver-Model documentation

The following holds information on the U-Boot device driver framework:
driver-model, including the design details of itself and several driver
subsystems.

	Driver Model
	Debugging driver model

	Design Details

	Ethernet Driver Guide

	Pre-relocation device tree manipulation

	File System Firmware Loader

	How to port an I2C driver to driver model

	Live Device Tree

	Migration Schedule

	Compiled-in Device Tree / Platform Data

	PCI with Driver Model

	PMIC framework based on Driver Model

	Remote Processor Framework

	How to port a serial driver to driver model

	How to port a SPI driver to driver model

	How USB works with driver model

U-Boot API documentation

These books get into the details of how specific U-Boot subsystems work
from the point of view of a U-Boot developer. Much of the information here
is taken directly from the U-Boot source, with supplemental material added
as needed (or at least as we managed to add it - probably not all that is
needed).

	U-Boot API documentation
	UEFI subsystem

	Linker-Generated Arrays

	Serial system

Architecture-specific doc

These books provide programming details about architecture-specific
implementation.

	Architecture-specific doc
	ARC

	ARM64

	M68K / ColdFire

	MIPS

	NDS32

	Nios II

	Sandbox

	SuperH

	x86

	Xtensa

Board-specific doc

These books provide details about board-specific information. They are
organized in a vendor subdirectory.

	Board-specific doc
	Andes Tech

	Atmel

	Coreboot

	Emulation

	Freescale

	Google

	Intel

	Renesas

	Rockchip

	SiFive

	STMicroelectronics

	Toradex

	Xilinx

Android-specific doc

These books provide information about booting the Android OS from U-Boot,
manipulating Android images from U-Boot shell and discusses other
Android-specific features available in U-Boot.

	Android-specific doc
	Android A/B updates

	Android Verified Boot 2.0

	Android Bootloader Control Block (BCB)

	Android Boot Image

	FastBoot Version 0.4

	Android Fastboot

Indices and tables

	Index

Build U-Boot

	Host tools
	Building tools for Linux

	Building tools for Windows

Host tools

Building tools for Linux

To allow distributions to distribute all possible tools in a generic way,
avoiding the need of specific tools building for each machine, a tools only
defconfig file is provided.

Using this, we can build the tools by doing:

$ make tools-only_defconfig
$ make tools-only

Building tools for Windows

If you wish to generate Windows versions of the utilities in the tools directory
you can use MSYS2, a software distro and building platform for Windows.

Download the MSYS2 installer from https://www.msys2.org. Make sure you have
installed all required packages below in order to build these host tools:

* gcc (9.1.0)
* make (4.2.1)
* bison (3.4.2)
* diffutils (3.7)
* openssl-devel (1.1.1.d)

Note the version numbers in these parentheses above are the package versions
at the time being when writing this document. The MSYS2 installer tested is
http://repo.msys2.org/distrib/x86_64/msys2-x86_64-20190524.exe.

There are 3 MSYS subsystems installed: MSYS2, MinGW32 and MinGW64. Each
subsystem provides an environment to build Windows applications. The MSYS2
environment is for building POSIX compliant software on Windows using an
emulation layer. The MinGW32/64 subsystems are for building native Windows
applications using a linux toolchain (gcc, bash, etc), targeting respectively
32 and 64 bit Windows.

Launch the MSYS2 shell of the MSYS2 environment, and do the following:

$ make tools-only_defconfig
$ make tools-only NO_SDL=1

Unified Extensible Firmware (UEFI)

	UEFI on U-Boot
	Development target

	Building U-Boot for UEFI

	The UEFI life cycle

	The UEFI object model

	The UEFI events

	The UEFI driver model

	U-Boot devices mapped as UEFI devices

	UEFI devices mapped as U-Boot devices

	Miscellaneous

	Links

	U-Boot on EFI
	Motivation

	Status

	Build Instructions

	Trying it out

	Inner workings

	Future work

	Where is the code?

	iSCSI booting with U-Boot and iPXE
	Motivation

	Boot sequence

	Security

	Configuration

	Links

UEFI on U-Boot

The Unified Extensible Firmware Interface Specification (UEFI) [1] has become
the default for booting on AArch64 and x86 systems. It provides a stable API for
the interaction of drivers and applications with the firmware. The API comprises
access to block storage, network, and console to name a few. The Linux kernel
and boot loaders like GRUB or the FreeBSD loader can be executed.

Development target

The implementation of UEFI in U-Boot strives to reach the requirements described
in the “Embedded Base Boot Requirements (EBBR) Specification - Release v1.0”
[2]. The “Server Base Boot Requirements System Software on ARM Platforms” [3]
describes a superset of the EBBR specification and may be used as further
reference.

A full blown UEFI implementation would contradict the U-Boot design principle
“keep it small”.

Building U-Boot for UEFI

The UEFI standard supports only little-endian systems. The UEFI support can be
activated for ARM and x86 by specifying:

CONFIG_CMD_BOOTEFI=y
CONFIG_EFI_LOADER=y

in the .config file.

Support for attaching virtual block devices, e.g. iSCSI drives connected by the
loaded UEFI application [4], requires:

CONFIG_BLK=y
CONFIG_PARTITIONS=y

Executing a UEFI binary

The bootefi command is used to start UEFI applications or to install UEFI
drivers. It takes two parameters:

bootefi <image address> [fdt address]

	image address - the memory address of the UEFI binary

	fdt address - the memory address of the flattened device tree

Below you find the output of an example session starting GRUB:

=> load mmc 0:2 ${fdt_addr_r} boot/dtb
29830 bytes read in 14 ms (2 MiB/s)
=> load mmc 0:1 ${kernel_addr_r} efi/debian/grubaa64.efi
reading efi/debian/grubaa64.efi
120832 bytes read in 7 ms (16.5 MiB/s)
=> bootefi ${kernel_addr_r} ${fdt_addr_r}

The environment variable ‘bootargs’ is passed as load options in the UEFI system
table. The Linux kernel EFI stub uses the load options as command line
arguments.

Launching a UEFI binary from a FIT image

A signed FIT image can be used to securely boot a UEFI image via the
bootm command. This feature is available if U-Boot is configured with:

CONFIG_BOOTM_EFI=y

A sample configuration is provided as file doc/uImage.FIT/uefi.its.

Below you find the output of an example session starting GRUB:

=> load mmc 0:1 ${kernel_addr_r} image.fit
4620426 bytes read in 83 ms (53.1 MiB/s)
=> bootm ${kernel_addr_r}#config-grub-nofdt
Loading kernel from FIT Image at 40400000 ...
 Using 'config-grub-nofdt' configuration
 Verifying Hash Integrity ... sha256,rsa2048:dev+ OK
 Trying 'efi-grub' kernel subimage
 Description: GRUB EFI Firmware
 Created: 2019-11-20 8:18:16 UTC
 Type: Kernel Image (no loading done)
 Compression: uncompressed
 Data Start: 0x404000d0
 Data Size: 450560 Bytes = 440 KiB
 Hash algo: sha256
 Hash value: 4dbee00021112df618f58b3f7cf5e1595533d543094064b9ce991e8b054a9eec
 Verifying Hash Integrity ... sha256+ OK
 XIP Kernel Image (no loading done)
Transferring control to EFI (at address 404000d0) ...
Welcome to GRUB!

See doc/uImage.FIT/howto.txt for an introduction to FIT images.

Executing the boot manager

The UEFI specification foresees to define boot entries and boot sequence via UEFI
variables. Booting according to these variables is possible via:

bootefi bootmgr [fdt address]

As of U-Boot v2018.03 UEFI variables are not persisted and cannot be set at
runtime.

Executing the built in hello world application

A hello world UEFI application can be built with:

CONFIG_CMD_BOOTEFI_HELLO_COMPILE=y

It can be embedded into the U-Boot binary with:

CONFIG_CMD_BOOTEFI_HELLO=y

The bootefi command is used to start the embedded hello world application:

bootefi hello [fdt address]

Below you find the output of an example session:

=> bootefi hello ${fdtcontroladdr}
Starting EFI application at 01000000 ...
WARNING: using memory device/image path, this may confuse some payloads!
Hello, world!
Running on UEFI 2.7
Have SMBIOS table
Have device tree
Load options: root=/dev/sdb3 init=/sbin/init rootwait ro
Application terminated, r = 0

The environment variable fdtcontroladdr points to U-Boot’s internal device tree
(if available).

Executing the built-in self-test

An UEFI self-test suite can be embedded in U-Boot by building with:

CONFIG_CMD_BOOTEFI_SELFTEST=y

For testing the UEFI implementation the bootefi command can be used to start the
self-test:

bootefi selftest [fdt address]

The environment variable ‘efi_selftest’ can be used to select a single test. If
it is not provided all tests are executed except those marked as ‘on request’.
If the environment variable is set to ‘list’ a list of all tests is shown.

Below you can find the output of an example session:

=> setenv efi_selftest simple network protocol
=> bootefi selftest
Testing EFI API implementation
Selected test: 'simple network protocol'
Setting up 'simple network protocol'
Setting up 'simple network protocol' succeeded
Executing 'simple network protocol'
DHCP Discover
DHCP reply received from 192.168.76.2 (52:55:c0:a8:4c:02)
 as broadcast message.
Executing 'simple network protocol' succeeded
Tearing down 'simple network protocol'
Tearing down 'simple network protocol' succeeded
Boot services terminated
Summary: 0 failures
Preparing for reset. Press any key.

The UEFI life cycle

After the U-Boot platform has been initialized the UEFI API provides two kinds
of services:

	boot services

	runtime services

The API can be extended by loading UEFI drivers which come in two variants:

	boot drivers

	runtime drivers

UEFI drivers are installed with U-Boot’s bootefi command. With the same command
UEFI applications can be executed.

Loaded images of UEFI drivers stay in memory after returning to U-Boot while
loaded images of applications are removed from memory.

An UEFI application (e.g. an operating system) that wants to take full control
of the system calls ExitBootServices. After a UEFI application calls
ExitBootServices

	boot services are not available anymore

	timer events are stopped

	the memory used by U-Boot except for runtime services is released

	the memory used by boot time drivers is released

So this is a point of no return. Afterwards the UEFI application can only return
to U-Boot by rebooting.

The UEFI object model

UEFI offers a flexible and expandable object model. The objects in the UEFI API
are devices, drivers, and loaded images. These objects are referenced by
handles.

The interfaces implemented by the objects are referred to as protocols. These
are identified by GUIDs. They can be installed and uninstalled by calling the
appropriate boot services.

Handles are created by the InstallProtocolInterface or the
InstallMultipleProtocolinterfaces service if NULL is passed as handle.

Handles are deleted when the last protocol has been removed with the
UninstallProtocolInterface or the UninstallMultipleProtocolInterfaces service.

Devices offer the EFI_DEVICE_PATH_PROTOCOL. A device path is the concatenation
of device nodes. By their device paths all devices of a system are arranged in a
tree.

Drivers offer the EFI_DRIVER_BINDING_PROTOCOL. This protocol is used to connect
a driver to devices (which are referenced as controllers in this context).

Loaded images offer the EFI_LOADED_IMAGE_PROTOCOL. This protocol provides meta
information about the image and a pointer to the unload callback function.

The UEFI events

In the UEFI terminology an event is a data object referencing a notification
function which is queued for calling when the event is signaled. The following
types of events exist:

	periodic and single shot timer events

	exit boot services events, triggered by calling the ExitBootServices() service

	virtual address change events

	memory map change events

	read to boot events

	reset system events

	system table events

	events that are only triggered programmatically

Events can be created with the CreateEvent service and deleted with CloseEvent
service.

Events can be assigned to an event group. If any of the events in a group is
signaled, all other events in the group are also set to the signaled state.

The UEFI driver model

A driver is specific for a single protocol installed on a device. To install a
driver on a device the ConnectController service is called. In this context
controller refers to the device for which the driver is installed.

The relevant drivers are identified using the EFI_DRIVER_BINDING_PROTOCOL. This
protocol has has three functions:

	supported - determines if the driver is compatible with the device

	start - installs the driver by opening the relevant protocol with
attribute EFI_OPEN_PROTOCOL_BY_DRIVER

	stop - uninstalls the driver

The driver may create child controllers (child devices). E.g. a driver for block
IO devices will create the device handles for the partitions. The child
controllers will open the supported protocol with the attribute
EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.

A driver can be detached from a device using the DisconnectController service.

U-Boot devices mapped as UEFI devices

Some of the U-Boot devices are mapped as UEFI devices

	block IO devices

	console

	graphical output

	network adapter

As of U-Boot 2018.03 the logic for doing this is hard coded.

The development target is to integrate the setup of these UEFI devices with the
U-Boot driver model [5]. So when a U-Boot device is discovered a handle should
be created and the device path protocol and the relevant IO protocol should be
installed. The UEFI driver then would be attached by calling ConnectController.
When a U-Boot device is removed DisconnectController should be called.

UEFI devices mapped as U-Boot devices

UEFI drivers binaries and applications may create new (virtual) devices, install
a protocol and call the ConnectController service. Now the matching UEFI driver
is determined by iterating over the implementations of the
EFI_DRIVER_BINDING_PROTOCOL.

It is the task of the UEFI driver to create a corresponding U-Boot device and to
proxy calls for this U-Boot device to the controller.

In U-Boot 2018.03 this has only been implemented for block IO devices.

UEFI uclass

An UEFI uclass driver (lib/efi_driver/efi_uclass.c) has been created that
takes care of initializing the UEFI drivers and providing the
EFI_DRIVER_BINDING_PROTOCOL implementation for the UEFI drivers.

A linker created list is used to keep track of the UEFI drivers. To create an
entry in the list the UEFI driver uses the U_BOOT_DRIVER macro specifying
UCLASS_EFI as the ID of its uclass, e.g:

/* Identify as UEFI driver */
U_BOOT_DRIVER(efi_block) = {
 .name = "EFI block driver",
 .id = UCLASS_EFI,
 .ops = &driver_ops,
};

The available operations are defined via the structure struct efi_driver_ops:

struct efi_driver_ops {
 const efi_guid_t *protocol;
 const efi_guid_t *child_protocol;
 int (*bind)(efi_handle_t handle, void *interface);
};

When the supported() function of the EFI_DRIVER_BINDING_PROTOCOL is called the
uclass checks if the protocol GUID matches the protocol GUID of the UEFI driver.
In the start() function the bind() function of the UEFI driver is called after
checking the GUID.
The stop() function of the EFI_DRIVER_BINDING_PROTOCOL disconnects the child
controllers created by the UEFI driver and the UEFI driver. (In U-Boot v2013.03
this is not yet completely implemented.)

UEFI block IO driver

The UEFI block IO driver supports devices exposing the EFI_BLOCK_IO_PROTOCOL.

When connected it creates a new U-Boot block IO device with interface type
IF_TYPE_EFI, adds child controllers mapping the partitions, and installs the
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL on these. This can be used together with the
software iPXE to boot from iSCSI network drives [4].

This driver is only available if U-Boot is configured with:

CONFIG_BLK=y
CONFIG_PARTITIONS=y

Miscellaneous

Load file 2 protocol

The load file 2 protocol can be used by the Linux kernel to load the initial
RAM disk. U-Boot can be configured to provide an implementation with:

EFI_LOAD_FILE2_INITRD=y
EFI_INITRD_FILESPEC=interface dev:part path_to_initrd

Links

	[1] http://uefi.org/specifications - UEFI specifications

	[2] https://github.com/ARM-software/ebbr/releases/download/v1.0/ebbr-v1.0.pdf -
Embedded Base Boot Requirements (EBBR) Specification - Release v1.0

	[3] https://developer.arm.com/docs/den0044/latest/server-base-boot-requirements-system-software-on-arm-platforms-version-11 -
Server Base Boot Requirements System Software on ARM Platforms - Version 1.1

	[4] iSCSI booting with U-Boot and iPXE

	[5] Driver Model

U-Boot on EFI

This document provides information about U-Boot running on top of EFI, either
as an application or just as a means of getting U-Boot onto a new platform.

Motivation

Running U-Boot on EFI is useful in several situations:

	You have EFI running on a board but U-Boot does not natively support it
fully yet. You can boot into U-Boot from EFI and use that until U-Boot is
fully ported

	You need to use an EFI implementation (e.g. UEFI) because your vendor
requires it in order to provide support

	You plan to use coreboot to boot into U-Boot but coreboot support does
not currently exist for your platform. In the meantime you can use U-Boot
on EFI and then move to U-Boot on coreboot when ready

	You use EFI but want to experiment with a simpler alternative like U-Boot

Status

Only x86 is supported at present. If you are using EFI on another architecture
you may want to reconsider. However, much of the code is generic so could be
ported.

U-Boot supports running as an EFI application for 32-bit EFI only. This is
not very useful since only a serial port is provided. You can look around at
memory and type ‘help’ but that is about it.

More usefully, U-Boot supports building itself as a payload for either 32-bit
or 64-bit EFI. U-Boot is packaged up and loaded in its entirety by EFI. Once
started, U-Boot changes to 32-bit mode (currently) and takes over the
machine. You can use devices, boot a kernel, etc.

Build Instructions

First choose a board that has EFI support and obtain an EFI implementation
for that board. It will be either 32-bit or 64-bit. Alternatively, you can
opt for using QEMU [1] and the OVMF [2], as detailed below.

To build U-Boot as an EFI application (32-bit EFI required), enable CONFIG_EFI
and CONFIG_EFI_APP. The efi-x86_app config (efi-x86_app_defconfig) is set up
for this. Just build U-Boot as normal, e.g.:

make efi-x86_app_defconfig
make

To build U-Boot as an EFI payload (32-bit or 64-bit EFI can be used), enable
CONFIG_EFI, CONFIG_EFI_STUB, and select either CONFIG_EFI_STUB_32BIT or
CONFIG_EFI_STUB_64BIT. The efi-x86_payload configs (efi-x86_payload32_defconfig
and efi-x86_payload32_defconfig) are set up for this. Then build U-Boot as
normal, e.g.:

make efi-x86_payload32_defconfig (or efi-x86_payload64_defconfig)
make

You will end up with one of these files depending on what you build for:

	u-boot-app.efi - U-Boot EFI application

	u-boot-payload.efi - U-Boot EFI payload application

Trying it out

QEMU is an emulator and it can emulate an x86 machine. Please make sure your
QEMU version is 2.3.0 or above to test this. You can run the payload with
something like this:

mkdir /tmp/efi
cp /path/to/u-boot*.efi /tmp/efi
qemu-system-x86_64 -bios bios.bin -hda fat:/tmp/efi/

Add -nographic if you want to use the terminal for output. Once it starts
type ‘fs0:u-boot-payload.efi’ to run the payload or ‘fs0:u-boot-app.efi’ to
run the application. ‘bios.bin’ is the EFI ‘BIOS’. Check [2] to obtain a
prebuilt EFI BIOS for QEMU or you can build one from source as well.

To try it on real hardware, put u-boot-app.efi on a suitable boot medium,
such as a USB stick. Then you can type something like this to start it:

fs0:u-boot-payload.efi

(or fs0:u-boot-app.efi for the application)

This will start the payload, copy U-Boot into RAM and start U-Boot. Note
that EFI does not support booting a 64-bit application from a 32-bit
EFI (or vice versa). Also it will often fail to print an error message if
you get this wrong.

Inner workings

Here follow a few implementation notes for those who want to fiddle with
this and perhaps contribute patches.

The application and payload approaches sound similar but are in fact
implemented completely differently.

EFI Application

For the application the whole of U-Boot is built as a shared library. The
efi_main() function is in lib/efi/efi_app.c. It sets up some basic EFI
functions with efi_init(), sets up U-Boot global_data, allocates memory for
U-Boot’s malloc(), etc. and enters the normal init sequence (board_init_f()
and board_init_r()).

Since U-Boot limits its memory access to the allocated regions very little
special code is needed. The CONFIG_EFI_APP option controls a few things
that need to change so ‘git grep CONFIG_EFI_APP’ may be instructive.
The CONFIG_EFI option controls more general EFI adjustments.

The only available driver is the serial driver. This calls back into EFI
‘boot services’ to send and receive characters. Although it is implemented
as a serial driver the console device is not necessarilly serial. If you
boot EFI with video output then the ‘serial’ device will operate on your
target devices’s display instead and the device’s USB keyboard will also
work if connected. If you have both serial and video output, then both
consoles will be active. Even though U-Boot does the same thing normally,
These are features of EFI, not U-Boot.

Very little code is involved in implementing the EFI application feature.
U-Boot is highly portable. Most of the difficulty is in modifying the
Makefile settings to pass the right build flags. In particular there is very
little x86-specific code involved - you can find most of it in
arch/x86/cpu. Porting to ARM (which can also use EFI if you are brave
enough) should be straightforward.

Use the ‘reset’ command to get back to EFI.

EFI Payload

The payload approach is a different kettle of fish. It works by building
U-Boot exactly as normal for your target board, then adding the entire
image (including device tree) into a small EFI stub application responsible
for booting it. The stub application is built as a normal EFI application
except that it has a lot of data attached to it.

The stub application is implemented in lib/efi/efi_stub.c. The efi_main()
function is called by EFI. It is responsible for copying U-Boot from its
original location into memory, disabling EFI boot services and starting
U-Boot. U-Boot then starts as normal, relocates, starts all drivers, etc.

The stub application is architecture-dependent. At present it has some
x86-specific code and a comment at the top of efi_stub.c describes this.

While the stub application does allocate some memory from EFI this is not
used by U-Boot (the payload). In fact when U-Boot starts it has all of the
memory available to it and can operate as it pleases (but see the next
section).

Tables

The payload can pass information to U-Boot in the form of EFI tables. At
present this feature is used to pass the EFI memory map, an inordinately
large list of memory regions. You can use the ‘efi mem all’ command to
display this list. U-Boot uses the list to work out where to relocate
itself.

Although U-Boot can use any memory it likes, EFI marks some memory as used
by ‘run-time services’, code that hangs around while U-Boot is running and
is even present when Linux is running. This is common on x86 and provides
a way for Linux to call back into the firmware to control things like CPU
fan speed. U-Boot uses only ‘conventional’ memory, in EFI terminology. It
will relocate itself to the top of the largest block of memory it can find
below 4GB.

Interrupts

U-Boot drivers typically don’t use interrupts. Since EFI enables interrupts
it is possible that an interrupt will fire that U-Boot cannot handle. This
seems to cause problems. For this reason the U-Boot payload runs with
interrupts disabled at present.

32/64-bit

While the EFI application can in principle be built as either 32- or 64-bit,
only 32-bit is currently supported. This means that the application can only
be used with 32-bit EFI.

The payload stub can be build as either 32- or 64-bits. Only a small amount
of code is built this way (see the extra- line in lib/efi/Makefile).
Everything else is built as a normal U-Boot, so is always 32-bit on x86 at
present.

Future work

This work could be extended in a number of ways:

	Add ARM support

	Add 64-bit application support

	Figure out how to solve the interrupt problem

	Add more drivers to the application side (e.g. video, block devices, USB,
environment access). This would mostly be an academic exercise as a strong
use case is not readily apparent, but it might be fun.

	Avoid turning off boot services in the stub. Instead allow U-Boot to make
use of boot services in case it wants to. It is unclear what it might want
though.

Where is the code?

	lib/efi

	payload stub, application, support code. Mostly arch-neutral

	arch/x86/cpu/efi

	x86 support code for running as an EFI application and payload

	board/efi/efi-x86_app/efi.c

	x86 board code for running as an EFI application

	board/efi/efi-x86_payload

	generic x86 EFI payload board support code

	common/cmd_efi.c

	the ‘efi’ command

–
Ben Stoltz, Simon Glass
Google, Inc
July 2015

	[1] http://www.qemu.org

	[2] http://www.tianocore.org/ovmf/

iSCSI booting with U-Boot and iPXE

Motivation

U-Boot has only a reduced set of supported network protocols. The focus for
network booting has been on UDP based protocols. A TCP stack and HTTP support
are expected to be integrated in 2018 together with a wget command.

For booting a diskless computer this leaves us with BOOTP or DHCP to get the
address of a boot script. TFTP or NFS can be used to load the boot script, the
operating system kernel and the initial file system (initrd).

These protocols are insecure. The client cannot validate the authenticity
of the contacted servers. And the server cannot verify the identity of the
client.

Furthermore the services providing the operating system loader or kernel are
not the ones that the operating system typically will use. Especially in a SAN
environment this makes updating the operating system a hassle. After installing
a new kernel version the boot files have to be copied to the TFTP server
directory.

The HTTPS protocol provides certificate based validation of servers. Sensitive
data like passwords can be securely transmitted.

The iSCSI protocol is used for connecting storage attached networks. It
provides mutual authentication using the CHAP protocol. It typically runs on
a TCP transport.

Thus a better solution than DHCP/TFTP/NFS boot would be to load a boot script
via HTTPS and to download any other files needed for booting via iSCSI from the
same target where the operating system is installed.

An alternative to implementing these protocols in U-Boot is to use an existing
software that can run on top of U-Boot. iPXE[1] is the “swiss army knife” of
network booting. It supports both HTTPS and iSCSI. It has a scripting engine for
fine grained control of the boot process and can provide a command shell.

iPXE can be built as an EFI application (named snp.efi) which can be loaded and
run by U-Boot.

Boot sequence

U-Boot loads the EFI application iPXE snp.efi using the bootefi command. This
application has network access via the simple network protocol offered by
U-Boot.

iPXE executes its internal script. This script may optionally chain load a
secondary boot script via HTTPS or open a shell.

For the further boot process iPXE connects to the iSCSI server. This includes
the mutual authentication using the CHAP protocol. After the authentication iPXE
has access to the iSCSI targets.

For a selected iSCSI target iPXE sets up a handle with the block IO protocol. It
uses the ConnectController boot service of U-Boot to request U-Boot to connect a
file system driver. U-Boot reads from the iSCSI drive via the block IO protocol
offered by iPXE. It creates the partition handles and installs the simple file
protocol. Now iPXE can call the simple file protocol to load GRUB[2]. U-Boot
uses the block IO protocol offered by iPXE to fulfill the request.

Once GRUB is started it uses the same block IO protocol to load Linux. Via
the EFI stub Linux is called as an EFI application:

 +--------+ +--------+
 | | Runs | |
 | U-Boot |========>| iPXE |
 | EFI | | snp.efi|
+--------+ | | DHCP | |
	<===	********	<========	
DHCP			Get IP	
Server			Address	
	===>	********	========>	
+--------+ | | Response| |
 | | | |
 | | | |
+--------+ | | HTTPS | |
	<===	********	<========	
HTTPS			Load	
Server			Script	
	===>	********	========>	
+--------+ | | | |
 | | | |
 | | | |
+--------+ | | iSCSI | |
	<===	********	<========	
iSCSI			Auth	
Server	===>	********	========>	
			Loads	
	<===	********	<========	
			GRUB	
	===>	********	========>	
	<===	********	<========	********
	===>	********	========>	********
+--------+ +--------+ +--------+ +--------+ | |
 | |
 | |
 | ~ ~ ~ ~|

Security

The iSCSI protocol is not encrypted. The traffic could be secured using IPsec
but neither U-Boot nor iPXE does support this. So we should at least separate
the iSCSI traffic from all other network traffic. This can be achieved using a
virtual local area network (VLAN).

Configuration

iPXE

For running iPXE on arm64 the bin-arm64-efi/snp.efi build target is needed:

git clone http://git.ipxe.org/ipxe.git
cd ipxe/src
make bin-arm64-efi/snp.efi -j6 EMBED=myscript.ipxe

The available commands for the boot script are documented at:

http://ipxe.org/cmd

Credentials are managed as environment variables. These are described here:

http://ipxe.org/cfg

iPXE by default will put the CPU to rest when waiting for input. U-Boot does
not wake it up due to missing interrupt support. To avoid this behavior create
file src/config/local/nap.h:

/* nap.h */
#undef NAP_EFIX86
#undef NAP_EFIARM
#define NAP_NULL

The supported commands in iPXE are controlled by an include, too. Putting the
following into src/config/local/general.h is sufficient for most use cases:

/* general.h */
#define NSLOOKUP_CMD /* Name resolution command */
#define PING_CMD /* Ping command */
#define NTP_CMD /* NTP commands */
#define VLAN_CMD /* VLAN commands */
#define IMAGE_EFI /* EFI image support */
#define DOWNLOAD_PROTO_HTTPS /* Secure Hypertext Transfer Protocol */
#define DOWNLOAD_PROTO_FTP /* File Transfer Protocol */
#define DOWNLOAD_PROTO_NFS /* Network File System Protocol */
#define DOWNLOAD_PROTO_FILE /* Local file system access */

Open-iSCSI

When the root file system is on an iSCSI drive you should disable pings and set
the replacement timer to a high value in the configuration file [3]:

node.conn[0].timeo.noop_out_interval = 0
node.conn[0].timeo.noop_out_timeout = 0
node.session.timeo.replacement_timeout = 86400

Links

	[1] https://ipxe.org - iPXE open source boot firmware

	[2] https://www.gnu.org/software/grub/ -
GNU GRUB (Grand Unified Bootloader)

	[3] https://github.com/open-iscsi/open-iscsi/blob/master/README -
Open-iSCSI README

Driver Model

	Debugging driver model
	Useful techniques in general

	Failure to locate a device

	Design Details
	Terminology

	How to try it

	Running the tests

	What is going on?

	Declaring Drivers

	Platform Data

	Device Tree

	Declaring Uclasses

	Device Sequence Numbers

	Bus Drivers

	Driver Lifecycle

	Data Structures

	Changes since v1

	Pre-Relocation Support

	SPL Support

	Enabling Driver Model

	Things to punt for later

	Ethernet Driver Guide
	Driver framework

	Driver methods

	CONFIG_PHYLIB / CONFIG_CMD_MII

	Legacy network drivers

	Pre-relocation device tree manipulation
	Purpose

	Implementation

	Example

	Work to be done

	File System Firmware Loader
	Firmware Loader API core features

	Firmware storage device described in device tree source

	File system firmware Loader API

	How to port an I2C driver to driver model

	Live Device Tree
	Introduction

	Motivation

	Implementation

	Enabling livetree

	Porting drivers

	Useful ofnode functions

	Phandles

	Reading addresses

	fdtdec

	Modifying the livetree

	Internal implementation

	Errors

	Adding new access functions

	Future work

	Migration Schedule
	CONFIG_DM

	CONFIG_DM_MMC

	CONFIG_DM_USB

	CONFIG_SATA

	CONFIG_BLK

	CONFIG_DM_SPI / CONFIG_DM_SPI_FLASH

	CONFIG_DM_PCI

	CONFIG_DM_VIDEO

	CONFIG_DM_ETH

	Compiled-in Device Tree / Platform Data
	Introduction

	Caveats

	How it works

	Converting of-platdata to a useful form

	How to structure your driver

	Internals

	Credits

	Future work

	PCI with Driver Model
	How busses are scanned

	Sandbox

	PMIC framework based on Driver Model
	Introduction

	How doees it work

	Pmic uclass

	Regulator uclass

	Remote Processor Framework
	Introduction

	How does it work - The driver

	Describing the device using platform data

	Describing the device using device tree

	How to port a serial driver to driver model

	How to port a SPI driver to driver model
	How long does this take?

	Enable driver mode for SPI and SPI flash

	Add the skeleton

	Replace ‘exynos’ in the above code with your driver name

	#ifdef out all of the code in your driver except for the above

	Add some includes

	Build

	Set up your platform data structure

	Write ofdata_to_platdata() [for device tree only]

	Add the platform data [non-device-tree only]

	Add the device private data

	Add the probe() and remove() methods

	Implement set_speed()

	Implement set_mode()

	Implement claim_bus()

	Implement release_bus()

	Implement xfer()

	Set up the per-child data and child pre-probe function

	Optional: Set up cs_info() if you want it

	Test it

	Prepare patches and send them to the mailing lists

	A little note about SPI uclass features

	How USB works with driver model
	Introduction

	Enabling driver model for USB

	Support for EHCI and XHCI

	Data structures

	USB buses

	USB operations

	USB Devices

	Technical details on enumeration flow

	Hubs

	Example - Mass Storage

	Counter-example: USB Ethernet

	Sandbox

	Future work

Debugging driver model

This document aims to provide help when you cannot work out why driver model is
not doing what you expect.

Useful techniques in general

Here are some useful debugging features generally.

	If you are writing a new feature, consider doing it in sandbox instead of
on your board. Sandbox has no limits, allows easy debugging (e.g. gdb) and
you can write emulators for most common devices.

	Put ‘#define DEBUG’ at the top of a file, to activate all the debug() and
log_debug() statements in that file.

	Where logging is used, change the logging level, e.g. in SPL with
CONFIG_SPL_LOG_MAX_LEVEL=7 (which is LOGL_DEBUG) and
CONFIG_LOG_DEFAULT_LEVEL=7

	Where logging of return values is implemented with log_msg_ret(), set
CONFIG_LOG_ERROR_RETURN=y to see exactly where the error is happening

	Make sure you have a debug UART enabled - see CONFIG_DEBUG_UART. With this
you can get serial output (printf(), etc.) before the serial driver is
running.

	Use a JTAG emulator to set breakpoints and single-step through code

Not that most of these increase code/data size somewhat when enabled.

Failure to locate a device

Let’s say you have uclass_first_device_err() and it is not finding anything.

If it is returning an error, then that gives you a clue. Look up linux/errno.h
to see errors. Common ones are:

	-ENOMEM which indicates that memory is short. If it happens in SPL or
before relocation in U-Boot, check CONFIG_SPL_SYS_MALLOC_F_LEN and
CONFIG_SYS_MALLOC_F_LEN as they may need to be larger. Add ‘#define DEBUG’
at the very top of malloc_simple.c to get an idea of where your memory is
going.

	-EINVAL which typically indicates that something was missing or wrong in
the device tree node. Check that everything is correct and look at the
ofdata_to_platdata() method in the driver.

If there is no error, you should check if the device is actually bound. Call
dm_dump_all() just before you locate the device to make sure it exists.

If it does not exist, check your device tree compatible strings match up with
what the driver expects (in the struct udevice_id array).

If you are using of-platdata (e.g. CONFIG_SPL_OF_PLATDATA), check that the
driver name is the same as the first compatible string in the device tree (with
invalid-variable characters converted to underscore).

If you are really stuck, putting ‘#define LOG_DEBUG’ at the top of
drivers/core/lists.c should show you what is going on.

Design Details

This README contains high-level information about driver model, a unified
way of declaring and accessing drivers in U-Boot. The original work was done
by:

	Marek Vasut <marex@denx.de>

	Pavel Herrmann <morpheus.ibis@gmail.com>

	Viktor Křivák <viktor.krivak@gmail.com>

	Tomas Hlavacek <tmshlvck@gmail.com>

This has been both simplified and extended into the current implementation
by:

	Simon Glass <sjg@chromium.org>

Terminology

	Uclass

	a group of devices which operate in the same way. A uclass provides
a way of accessing individual devices within the group, but always
using the same interface. For example a GPIO uclass provides
operations for get/set value. An I2C uclass may have 10 I2C ports,
4 with one driver, and 6 with another.

	Driver

	some code which talks to a peripheral and presents a higher-level
interface to it.

	Device

	an instance of a driver, tied to a particular port or peripheral.

How to try it

Build U-Boot sandbox and run it:

make sandbox_defconfig
make
./u-boot -d u-boot.dtb

(type 'reset' to exit U-Boot)

There is a uclass called ‘demo’. This uclass handles
saying hello, and reporting its status. There are two drivers in this
uclass:

	simple: Just prints a message for hello, doesn’t implement status

	shape: Prints shapes and reports number of characters printed as status

The demo class is pretty simple, but not trivial. The intention is that it
can be used for testing, so it will implement all driver model features and
provide good code coverage of them. It does have multiple drivers, it
handles parameter data and platdata (data which tells the driver how
to operate on a particular platform) and it uses private driver data.

To try it, see the example session below:

=>demo hello 1
Hello '@' from 07981110: red 4
=>demo status 2
Status: 0
=>demo hello 2
g
r@
e@@
e@@@
n@@@@
g@@@@@
=>demo status 2
Status: 21
=>demo hello 4 ^
 y^^^
 e^^^^^
l^^^^^^^
l^^^^^^^
 o^^^^^
 w^^^
=>demo status 4
Status: 36
=>

Running the tests

The intent with driver model is that the core portion has 100% test coverage
in sandbox, and every uclass has its own test. As a move towards this, tests
are provided in test/dm. To run them, try:

./test/py/test.py --bd sandbox --build -k ut_dm -v

You should see something like this:

(venv)$./test/py/test.py --bd sandbox --build -k ut_dm -v
+make O=/root/u-boot/build-sandbox -s sandbox_defconfig
+make O=/root/u-boot/build-sandbox -s -j8
============================= test session starts ==============================
platform linux2 -- Python 2.7.5, pytest-2.9.0, py-1.4.31, pluggy-0.3.1 -- /root/u-boot/venv/bin/python
cachedir: .cache
rootdir: /root/u-boot, inifile:
collected 199 items

test/py/tests/test_ut.py::test_ut_dm_init PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_adc_bind] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_adc_multi_channel_conversion] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_adc_multi_channel_shot] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_adc_single_channel_conversion] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_adc_single_channel_shot] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_adc_supply] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_adc_wrong_channel_selection] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_autobind] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_autobind_uclass_pdata_alloc] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_autobind_uclass_pdata_valid] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_autoprobe] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_bus_child_post_bind] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_bus_child_post_bind_uclass] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_bus_child_pre_probe_uclass] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_bus_children] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_bus_children_funcs] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_bus_children_iterators] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_bus_parent_data] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_bus_parent_data_uclass] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_bus_parent_ops] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_bus_parent_platdata] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_bus_parent_platdata_uclass] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_children] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_clk_base] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_clk_periph] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_device_get_uclass_id] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_eth] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_eth_act] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_eth_alias] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_eth_prime] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_eth_rotate] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_fdt] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_fdt_offset] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_fdt_pre_reloc] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_fdt_uclass_seq] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_gpio] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_gpio_anon] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_gpio_copy] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_gpio_leak] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_gpio_phandles] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_gpio_requestf] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_i2c_bytewise] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_i2c_find] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_i2c_offset] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_i2c_offset_len] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_i2c_probe_empty] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_i2c_read_write] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_i2c_speed] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_leak] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_led_base] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_led_gpio] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_led_label] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_lifecycle] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_mmc_base] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_net_retry] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_operations] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_ordering] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_pci_base] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_pci_busnum] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_pci_swapcase] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_platdata] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_power_pmic_get] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_power_pmic_io] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_power_regulator_autoset] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_power_regulator_autoset_list] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_power_regulator_get] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_power_regulator_set_get_current] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_power_regulator_set_get_enable] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_power_regulator_set_get_mode] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_power_regulator_set_get_voltage] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_pre_reloc] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_ram_base] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_regmap_base] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_regmap_syscon] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_remoteproc_base] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_remove] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_reset_base] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_reset_walk] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_rtc_base] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_rtc_dual] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_rtc_reset] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_rtc_set_get] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_spi_find] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_spi_flash] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_spi_xfer] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_syscon_base] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_syscon_by_driver_data] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_timer_base] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_uclass] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_uclass_before_ready] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_uclass_devices_find] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_uclass_devices_find_by_name] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_uclass_devices_get] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_uclass_devices_get_by_name] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_usb_base] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_usb_flash] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_usb_keyb] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_usb_multi] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_usb_remove] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_usb_tree] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_usb_tree_remove] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_usb_tree_reorder] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_video_base] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_video_bmp] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_video_bmp_comp] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_video_chars] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_video_context] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_video_rotation1] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_video_rotation2] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_video_rotation3] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_video_text] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_video_truetype] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_video_truetype_bs] PASSED
test/py/tests/test_ut.py::test_ut[ut_dm_video_truetype_scroll] PASSED

======================= 84 tests deselected by '-kut_dm' =======================
================== 115 passed, 84 deselected in 3.77 seconds ===================

What is going on?

Let’s start at the top. The demo command is in cmd/demo.c. It does
the usual command processing and then:

struct udevice *demo_dev;

ret = uclass_get_device(UCLASS_DEMO, devnum, &demo_dev);

UCLASS_DEMO means the class of devices which implement ‘demo’. Other
classes might be MMC, or GPIO, hashing or serial. The idea is that the
devices in the class all share a particular way of working. The class
presents a unified view of all these devices to U-Boot.

This function looks up a device for the demo uclass. Given a device
number we can find the device because all devices have registered with
the UCLASS_DEMO uclass.

The device is automatically activated ready for use by uclass_get_device().

Now that we have the device we can do things like:

return demo_hello(demo_dev, ch);

This function is in the demo uclass. It takes care of calling the ‘hello’
method of the relevant driver. Bearing in mind that there are two drivers,
this particular device may use one or other of them.

The code for demo_hello() is in drivers/demo/demo-uclass.c:

int demo_hello(struct udevice *dev, int ch)
{
 const struct demo_ops *ops = device_get_ops(dev);

 if (!ops->hello)
 return -ENOSYS;

 return ops->hello(dev, ch);
}

As you can see it just calls the relevant driver method. One of these is
in drivers/demo/demo-simple.c:

static int simple_hello(struct udevice *dev, int ch)
{
 const struct dm_demo_pdata *pdata = dev_get_platdata(dev);

 printf("Hello from %08x: %s %d\n", map_to_sysmem(dev),
 pdata->colour, pdata->sides);

 return 0;
}

So that is a trip from top (command execution) to bottom (driver action)
but it leaves a lot of topics to address.

Declaring Drivers

A driver declaration looks something like this (see
drivers/demo/demo-shape.c):

static const struct demo_ops shape_ops = {
 .hello = shape_hello,
 .status = shape_status,
};

U_BOOT_DRIVER(demo_shape_drv) = {
 .name = "demo_shape_drv",
 .id = UCLASS_DEMO,
 .ops = &shape_ops,
 .priv_data_size = sizeof(struct shape_data),
};

This driver has two methods (hello and status) and requires a bit of
private data (accessible through dev_get_priv(dev) once the driver has
been probed). It is a member of UCLASS_DEMO so will register itself
there.

In U_BOOT_DRIVER it is also possible to specify special methods for bind
and unbind, and these are called at appropriate times. For many drivers
it is hoped that only ‘probe’ and ‘remove’ will be needed.

The U_BOOT_DRIVER macro creates a data structure accessible from C,
so driver model can find the drivers that are available.

The methods a device can provide are documented in the device.h header.
Briefly, they are:

	bind - make the driver model aware of a device (bind it to its driver)

	unbind - make the driver model forget the device

	ofdata_to_platdata - convert device tree data to platdata - see later

	probe - make a device ready for use

	remove - remove a device so it cannot be used until probed again

The sequence to get a device to work is bind, ofdata_to_platdata (if using
device tree) and probe.

Platform Data

Note: platform data is the old way of doing things. It is
basically a C structure which is passed to drivers to tell them about
platform-specific settings like the address of its registers, bus
speed, etc. Device tree is now the preferred way of handling this.
Unless you have a good reason not to use device tree (the main one
being you need serial support in SPL and don’t have enough SRAM for
the cut-down device tree and libfdt libraries) you should stay away
from platform data.

Platform data is like Linux platform data, if you are familiar with that.
It provides the board-specific information to start up a device.

Why is this information not just stored in the device driver itself? The
idea is that the device driver is generic, and can in principle operate on
any board that has that type of device. For example, with modern
highly-complex SoCs it is common for the IP to come from an IP vendor, and
therefore (for example) the MMC controller may be the same on chips from
different vendors. It makes no sense to write independent drivers for the
MMC controller on each vendor’s SoC, when they are all almost the same.
Similarly, we may have 6 UARTs in an SoC, all of which are mostly the same,
but lie at different addresses in the address space.

Using the UART example, we have a single driver and it is instantiated 6
times by supplying 6 lots of platform data. Each lot of platform data
gives the driver name and a pointer to a structure containing information
about this instance - e.g. the address of the register space. It may be that
one of the UARTS supports RS-485 operation - this can be added as a flag in
the platform data, which is set for this one port and clear for the rest.

Think of your driver as a generic piece of code which knows how to talk to
a device, but needs to know where it is, any variant/option information and
so on. Platform data provides this link between the generic piece of code
and the specific way it is bound on a particular board.

Examples of platform data include:

	The base address of the IP block’s register space

	
	Configuration options, like:

	
	the SPI polarity and maximum speed for a SPI controller

	the I2C speed to use for an I2C device

	the number of GPIOs available in a GPIO device

Where does the platform data come from? It is either held in a structure
which is compiled into U-Boot, or it can be parsed from the Device Tree
(see ‘Device Tree’ below).

For an example of how it can be compiled in, see demo-pdata.c which
sets up a table of driver names and their associated platform data.
The data can be interpreted by the drivers however they like - it is
basically a communication scheme between the board-specific code and
the generic drivers, which are intended to work on any board.

Drivers can access their data via dev->info->platdata. Here is
the declaration for the platform data, which would normally appear
in the board file.

static const struct dm_demo_pdata red_square = {
 .colour = "red",
 .sides = 4.
};

static const struct driver_info info[] = {
 {
 .name = "demo_shape_drv",
 .platdata = &red_square,
 },
};

demo1 = driver_bind(root, &info[0]);

Device Tree

While platdata is useful, a more flexible way of providing device data is
by using device tree. In U-Boot you should use this where possible. Avoid
sending patches which make use of the U_BOOT_DEVICE() macro unless strictly
necessary.

With device tree we replace the above code with the following device tree
fragment:

red-square {
 compatible = "demo-shape";
 colour = "red";
 sides = <4>;
};

This means that instead of having lots of U_BOOT_DEVICE() declarations in
the board file, we put these in the device tree. This approach allows a lot
more generality, since the same board file can support many types of boards
(e,g. with the same SoC) just by using different device trees. An added
benefit is that the Linux device tree can be used, thus further simplifying
the task of board-bring up either for U-Boot or Linux devs (whoever gets to
the board first!).

The easiest way to make this work it to add a few members to the driver:

.platdata_auto_alloc_size = sizeof(struct dm_test_pdata),
.ofdata_to_platdata = testfdt_ofdata_to_platdata,

The ‘auto_alloc’ feature allowed space for the platdata to be allocated
and zeroed before the driver’s ofdata_to_platdata() method is called. The
ofdata_to_platdata() method, which the driver write supplies, should parse
the device tree node for this device and place it in dev->platdata. Thus
when the probe method is called later (to set up the device ready for use)
the platform data will be present.

Note that both methods are optional. If you provide an ofdata_to_platdata
method then it will be called first (during activation). If you provide a
probe method it will be called next. See Driver Lifecycle below for more
details.

If you don’t want to have the platdata automatically allocated then you
can leave out platdata_auto_alloc_size. In this case you can use malloc
in your ofdata_to_platdata (or probe) method to allocate the required memory,
and you should free it in the remove method.

The driver model tree is intended to mirror that of the device tree. The
root driver is at device tree offset 0 (the root node, ‘/’), and its
children are the children of the root node.

In order for a device tree to be valid, the content must be correct with
respect to either device tree specification
(https://www.devicetree.org/specifications/) or the device tree bindings that
are found in the doc/device-tree-bindings directory. When not U-Boot specific
the bindings in this directory tend to come from the Linux Kernel. As such
certain design decisions may have been made already for us in terms of how
specific devices are described and bound. In most circumstances we wish to
retain compatibility without additional changes being made to the device tree
source files.

Declaring Uclasses

The demo uclass is declared like this:

UCLASS_DRIVER(demo) = {
 .id = UCLASS_DEMO,
};

It is also possible to specify special methods for probe, etc. The uclass
numbering comes from include/dm/uclass-id.h. To add a new uclass, add to the
end of the enum there, then declare your uclass as above.

Device Sequence Numbers

U-Boot numbers devices from 0 in many situations, such as in the command
line for I2C and SPI buses, and the device names for serial ports (serial0,
serial1, …). Driver model supports this numbering and permits devices
to be locating by their ‘sequence’. This numbering uniquely identifies a
device in its uclass, so no two devices within a particular uclass can have
the same sequence number.

Sequence numbers start from 0 but gaps are permitted. For example, a board
may have I2C buses 1, 4, 5 but no 0, 2 or 3. The choice of how devices are
numbered is up to a particular board, and may be set by the SoC in some
cases. While it might be tempting to automatically renumber the devices
where there are gaps in the sequence, this can lead to confusion and is
not the way that U-Boot works.

Each device can request a sequence number. If none is required then the
device will be automatically allocated the next available sequence number.

To specify the sequence number in the device tree an alias is typically
used. Make sure that the uclass has the DM_UC_FLAG_SEQ_ALIAS flag set.

aliases {
 serial2 = "/serial@22230000";
};

This indicates that in the uclass called “serial”, the named node
(“/serial@22230000”) will be given sequence number 2. Any command or driver
which requests serial device 2 will obtain this device.

More commonly you can use node references, which expand to the full path:

aliases {
 serial2 = &serial_2;
};
...
serial_2: serial@22230000 {
...
};

The alias resolves to the same string in this case, but this version is
easier to read.

Device sequence numbers are resolved when a device is probed. Before then
the sequence number is only a request which may or may not be honoured,
depending on what other devices have been probed. However the numbering is
entirely under the control of the board author so a conflict is generally
an error.

Bus Drivers

A common use of driver model is to implement a bus, a device which provides
access to other devices. Example of buses include SPI and I2C. Typically
the bus provides some sort of transport or translation that makes it
possible to talk to the devices on the bus.

Driver model provides some useful features to help with implementing buses.
Firstly, a bus can request that its children store some ‘parent data’ which
can be used to keep track of child state. Secondly, the bus can define
methods which are called when a child is probed or removed. This is similar
to the methods the uclass driver provides. Thirdly, per-child platform data
can be provided to specify things like the child’s address on the bus. This
persists across child probe()/remove() cycles.

For consistency and ease of implementation, the bus uclass can specify the
per-child platform data, so that it can be the same for all children of buses
in that uclass. There are also uclass methods which can be called when
children are bound and probed.

Here an explanation of how a bus fits with a uclass may be useful. Consider
a USB bus with several devices attached to it, each from a different (made
up) uclass:

xhci_usb (UCLASS_USB)
 eth (UCLASS_ETHERNET)
 camera (UCLASS_CAMERA)
 flash (UCLASS_FLASH_STORAGE)

Each of the devices is connected to a different address on the USB bus.
The bus device wants to store this address and some other information such
as the bus speed for each device.

To achieve this, the bus device can use dev->parent_platdata in each of its
three children. This can be auto-allocated if the bus driver (or bus uclass)
has a non-zero value for per_child_platdata_auto_alloc_size. If not, then
the bus device or uclass can allocate the space itself before the child
device is probed.

Also the bus driver can define the child_pre_probe() and child_post_remove()
methods to allow it to do some processing before the child is activated or
after it is deactivated.

Similarly the bus uclass can define the child_post_bind() method to obtain
the per-child platform data from the device tree and set it up for the child.
The bus uclass can also provide a child_pre_probe() method. Very often it is
the bus uclass that controls these features, since it avoids each driver
having to do the same processing. Of course the driver can still tweak and
override these activities.

Note that the information that controls this behaviour is in the bus’s
driver, not the child’s. In fact it is possible that child has no knowledge
that it is connected to a bus. The same child device may even be used on two
different bus types. As an example. the ‘flash’ device shown above may also
be connected on a SATA bus or standalone with no bus:

xhci_usb (UCLASS_USB)
 flash (UCLASS_FLASH_STORAGE) - parent data/methods defined by USB bus

sata (UCLASS_SATA)
 flash (UCLASS_FLASH_STORAGE) - parent data/methods defined by SATA bus

flash (UCLASS_FLASH_STORAGE) - no parent data/methods (not on a bus)

Above you can see that the driver for xhci_usb/sata controls the child’s
bus methods. In the third example the device is not on a bus, and therefore
will not have these methods at all. Consider the case where the flash
device defines child methods. These would be used for its children, and
would be quite separate from the methods defined by the driver for the bus
that the flash device is connetced to. The act of attaching a device to a
parent device which is a bus, causes the device to start behaving like a
bus device, regardless of its own views on the matter.

The uclass for the device can also contain data private to that uclass.
But note that each device on the bus may be a memeber of a different
uclass, and this data has nothing to do with the child data for each child
on the bus. It is the bus’ uclass that controls the child with respect to
the bus.

Driver Lifecycle

Here are the stages that a device goes through in driver model. Note that all
methods mentioned here are optional - e.g. if there is no probe() method for
a device then it will not be called. A simple device may have very few
methods actually defined.

Bind stage

U-Boot discovers devices using one of these two methods:

	Scan the U_BOOT_DEVICE() definitions. U-Boot looks up the name specified
by each, to find the appropriate U_BOOT_DRIVER() definition. In this case,
there is no path by which driver_data may be provided, but the U_BOOT_DEVICE()
may provide platdata.

	Scan through the device tree definitions. U-Boot looks at top-level
nodes in the the device tree. It looks at the compatible string in each node
and uses the of_match table of the U_BOOT_DRIVER() structure to find the
right driver for each node. In this case, the of_match table may provide a
driver_data value, but platdata cannot be provided until later.

For each device that is discovered, U-Boot then calls device_bind() to create a
new device, initializes various core fields of the device object such as name,
uclass & driver, initializes any optional fields of the device object that are
applicable such as of_offset, driver_data & platdata, and finally calls the
driver’s bind() method if one is defined.

At this point all the devices are known, and bound to their drivers. There
is a ‘struct udevice’ allocated for all devices. However, nothing has been
activated (except for the root device). Each bound device that was created
from a U_BOOT_DEVICE() declaration will hold the platdata pointer specified
in that declaration. For a bound device created from the device tree,
platdata will be NULL, but of_offset will be the offset of the device tree
node that caused the device to be created. The uclass is set correctly for
the device.

The device’s bind() method is permitted to perform simple actions, but
should not scan the device tree node, not initialise hardware, nor set up
structures or allocate memory. All of these tasks should be left for
the probe() method.

Note that compared to Linux, U-Boot’s driver model has a separate step of
probe/remove which is independent of bind/unbind. This is partly because in
U-Boot it may be expensive to probe devices and we don’t want to do it until
they are needed, or perhaps until after relocation.

Activation/probe

When a device needs to be used, U-Boot activates it, by following these
steps (see device_probe()):

1. If priv_auto_alloc_size is non-zero, then the device-private space
is allocated for the device and zeroed. It will be accessible as
dev->priv. The driver can put anything it likes in there, but should use
it for run-time information, not platform data (which should be static
and known before the device is probed).

2. If platdata_auto_alloc_size is non-zero, then the platform data space
is allocated. This is only useful for device tree operation, since
otherwise you would have to specific the platform data in the
U_BOOT_DEVICE() declaration. The space is allocated for the device and
zeroed. It will be accessible as dev->platdata.

3. If the device’s uclass specifies a non-zero per_device_auto_alloc_size,
then this space is allocated and zeroed also. It is allocated for and
stored in the device, but it is uclass data. owned by the uclass driver.
It is possible for the device to access it.

4. If the device’s immediate parent specifies a per_child_auto_alloc_size
then this space is allocated. This is intended for use by the parent
device to keep track of things related to the child. For example a USB
flash stick attached to a USB host controller would likely use this
space. The controller can hold information about the USB state of each
of its children.

5. All parent devices are probed. It is not possible to activate a device
unless its predecessors (all the way up to the root device) are activated.
This means (for example) that an I2C driver will require that its bus
be activated.

6. The device’s sequence number is assigned, either the requested one
(assuming no conflicts) or the next available one if there is a conflict
or nothing particular is requested.

7. If the driver provides an ofdata_to_platdata() method, then this is
called to convert the device tree data into platform data. This should
do various calls like fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev), …)
to access the node and store the resulting information into dev->platdata.
After this point, the device works the same way whether it was bound
using a device tree node or U_BOOT_DEVICE() structure. In either case,
the platform data is now stored in the platdata structure. Typically you
will use the platdata_auto_alloc_size feature to specify the size of the
platform data structure, and U-Boot will automatically allocate and zero
it for you before entry to ofdata_to_platdata(). But if not, you can
allocate it yourself in ofdata_to_platdata(). Note that it is preferable
to do all the device tree decoding in ofdata_to_platdata() rather than
in probe(). (Apart from the ugliness of mixing configuration and run-time
data, one day it is possible that U-Boot will cache platform data for
devices which are regularly de/activated).

8. The device’s probe() method is called. This should do anything that
is required by the device to get it going. This could include checking
that the hardware is actually present, setting up clocks for the
hardware and setting up hardware registers to initial values. The code
in probe() can access:

	platform data in dev->platdata (for configuration)

	private data in dev->priv (for run-time state)

	uclass data in dev->uclass_priv (for things the uclass stores
about this device)

Note: If you don’t use priv_auto_alloc_size then you will need to
allocate the priv space here yourself. The same applies also to
platdata_auto_alloc_size. Remember to free them in the remove() method.

	The device is marked ‘activated’

10. The uclass’s post_probe() method is called, if one exists. This may
cause the uclass to do some housekeeping to record the device as
activated and ‘known’ by the uclass.

Running stage

The device is now activated and can be used. From now until it is removed
all of the above structures are accessible. The device appears in the
uclass’s list of devices (so if the device is in UCLASS_GPIO it will appear
as a device in the GPIO uclass). This is the ‘running’ state of the device.

Removal stage

When the device is no-longer required, you can call device_remove() to
remove it. This performs the probe steps in reverse:

1. The uclass’s pre_remove() method is called, if one exists. This may
cause the uclass to do some housekeeping to record the device as
deactivated and no-longer ‘known’ by the uclass.

2. All the device’s children are removed. It is not permitted to have
an active child device with a non-active parent. This means that
device_remove() is called for all the children recursively at this point.

3. The device’s remove() method is called. At this stage nothing has been
deallocated so platform data, private data and the uclass data will all
still be present. This is where the hardware can be shut down. It is
intended that the device be completely inactive at this point, For U-Boot
to be sure that no hardware is running, it should be enough to remove
all devices.

4. The device memory is freed (platform data, private data, uclass data,
parent data).

Note: Because the platform data for a U_BOOT_DEVICE() is defined with a
static pointer, it is not de-allocated during the remove() method. For
a device instantiated using the device tree data, the platform data will
be dynamically allocated, and thus needs to be deallocated during the
remove() method, either:

	if the platdata_auto_alloc_size is non-zero, the deallocation
happens automatically within the driver model core; or

	when platdata_auto_alloc_size is 0, both the allocation (in probe()
or preferably ofdata_to_platdata()) and the deallocation in remove()
are the responsibility of the driver author.

5. The device sequence number is set to -1, meaning that it no longer
has an allocated sequence. If the device is later reactivated and that
sequence number is still free, it may well receive the name sequence
number again. But from this point, the sequence number previously used
by this device will no longer exist (think of SPI bus 2 being removed
and bus 2 is no longer available for use).

6. The device is marked inactive. Note that it is still bound, so the
device structure itself is not freed at this point. Should the device be
activated again, then the cycle starts again at step 2 above.

Unbind stage

The device is unbound. This is the step that actually destroys the device.
If a parent has children these will be destroyed first. After this point
the device does not exist and its memory has be deallocated.

Data Structures

Driver model uses a doubly-linked list as the basic data structure. Some
nodes have several lists running through them. Creating a more efficient
data structure might be worthwhile in some rare cases, once we understand
what the bottlenecks are.

Changes since v1

For the record, this implementation uses a very similar approach to the
original patches, but makes at least the following changes:

	Tried to aggressively remove boilerplate, so that for most drivers there
is little or no ‘driver model’ code to write.

	Moved some data from code into data structure - e.g. store a pointer to
the driver operations structure in the driver, rather than passing it
to the driver bind function.

	Rename some structures to make them more similar to Linux (struct udevice
instead of struct instance, struct platdata, etc.)

	Change the name ‘core’ to ‘uclass’, meaning U-Boot class. It seems that
this concept relates to a class of drivers (or a subsystem). We shouldn’t
use ‘class’ since it is a C++ reserved word, so U-Boot class (uclass) seems
better than ‘core’.

	Remove ‘struct driver_instance’ and just use a single ‘struct udevice’.
This removes a level of indirection that doesn’t seem necessary.

	Built in device tree support, to avoid the need for platdata

	Removed the concept of driver relocation, and just make it possible for
the new driver (created after relocation) to access the old driver data.
I feel that relocation is a very special case and will only apply to a few
drivers, many of which can/will just re-init anyway. So the overhead of
dealing with this might not be worth it.

	Implemented a GPIO system, trying to keep it simple

Pre-Relocation Support

For pre-relocation we simply call the driver model init function. Only
drivers marked with DM_FLAG_PRE_RELOC or the device tree ‘u-boot,dm-pre-reloc’
property are initialised prior to relocation. This helps to reduce the driver
model overhead. This flag applies to SPL and TPL as well, if device tree is
enabled (CONFIG_OF_CONTROL) there.

Note when device tree is enabled, the device tree ‘u-boot,dm-pre-reloc’
property can provide better control granularity on which device is bound
before relocation. While with DM_FLAG_PRE_RELOC flag of the driver all
devices with the same driver are bound, which requires allocation a large
amount of memory. When device tree is not used, DM_FLAG_PRE_RELOC is the
only way for statically declared devices via U_BOOT_DEVICE() to be bound
prior to relocation.

It is possible to limit this to specific relocation steps, by using
the more specialized ‘u-boot,dm-spl’ and ‘u-boot,dm-tpl’ flags
in the device tree node. For U-Boot proper you can use ‘u-boot,dm-pre-proper’
which means that it will be processed (and a driver bound) in U-Boot proper
prior to relocation, but will not be available in SPL or TPL.

To reduce the size of SPL and TPL, only the nodes with pre-relocation properties
(‘u-boot,dm-pre-reloc’, ‘u-boot,dm-spl’ or ‘u-boot,dm-tpl’) are keept in their
device trees (see README.SPL for details); the remaining nodes are always bound.

Then post relocation we throw that away and re-init driver model again.
For drivers which require some sort of continuity between pre- and
post-relocation devices, we can provide access to the pre-relocation
device pointers, but this is not currently implemented (the root device
pointer is saved but not made available through the driver model API).

SPL Support

Driver model can operate in SPL. Its efficient implementation and small code
size provide for a small overhead which is acceptable for all but the most
constrained systems.

To enable driver model in SPL, define CONFIG_SPL_DM. You might want to
consider the following option also. See the main README for more details.

	CONFIG_SYS_MALLOC_SIMPLE

	CONFIG_DM_WARN

	CONFIG_DM_DEVICE_REMOVE

	CONFIG_DM_STDIO

Enabling Driver Model

Driver model is being brought into U-Boot gradually. As each subsystems gets
support, a uclass is created and a CONFIG to enable use of driver model for
that subsystem.

For example CONFIG_DM_SERIAL enables driver model for serial. With that
defined, the old serial support is not enabled, and your serial driver must
conform to driver model. With that undefined, the old serial support is
enabled and driver model is not available for serial. This means that when
you convert a driver, you must either convert all its boards, or provide for
the driver to be compiled both with and without driver model (generally this
is not very hard).

See the main README for full details of the available driver model CONFIG
options.

Things to punt for later

Uclasses are statically numbered at compile time. It would be possible to
change this to dynamic numbering, but then we would require some sort of
lookup service, perhaps searching by name. This is slightly less efficient
so has been left out for now. One small advantage of dynamic numbering might
be fewer merge conflicts in uclass-id.h.

Ethernet Driver Guide

The networking stack in Das U-Boot is designed for multiple network devices
to be easily added and controlled at runtime. This guide is meant for people
who wish to review the net driver stack with an eye towards implementing your
own ethernet device driver. Here we will describe a new pseudo ‘APE’ driver.

Most existing drivers do already - and new network driver MUST - use the
U-Boot core driver model. Generic information about this can be found in
doc/driver-model/design.rst, this document will thus focus on the network
specific code parts.
Some drivers are still using the old Ethernet interface, differences between
the two and hints about porting will be handled at the end.

Driver framework

A network driver following the driver model must declare itself using
the UCLASS_ETH .id field in the U-Boot driver struct:

U_BOOT_DRIVER(eth_ape) = {
 .name = "eth_ape",
 .id = UCLASS_ETH,
 .of_match = eth_ape_ids,
 .ofdata_to_platdata = eth_ape_ofdata_to_platdata,
 .probe = eth_ape_probe,
 .ops = ð_ape_ops,
 .priv_auto_alloc_size = sizeof(struct eth_ape_priv),
 .platdata_auto_alloc_size = sizeof(struct eth_ape_pdata),
 .flags = DM_FLAG_ALLOC_PRIV_DMA,
};

struct eth_ape_priv contains runtime per-instance data, like buffers, pointers
to current descriptors, current speed settings, pointers to PHY related data
(like struct mii_dev) and so on. Declaring its size in .priv_auto_alloc_size
will let the driver framework allocate it at the right time.
It can be retrieved using a dev_get_priv(dev) call.

struct eth_ape_pdata contains static platform data, like the MMIO base address,
a hardware variant, the MAC address. struct eth_pdata eth_pdata
as the first member of this struct helps to avoid duplicated code.
If you don’t need any more platform data beside the standard member,
just use sizeof(struct eth_pdata) for the platdata_auto_alloc_size.

PCI devices add a line pointing to supported vendor/device ID pairs:

static struct pci_device_id supported[] = {
 { PCI_DEVICE(PCI_VENDOR_ID_APE, 0x4223) },
 {}
};

U_BOOT_PCI_DEVICE(eth_ape, supported);

It is also possible to declare support for a whole class of PCI devices:

{ PCI_DEVICE_CLASS(PCI_CLASS_SYSTEM_SDHCI << 8, 0xffff00) },

Device probing and instantiation will be handled by the driver model framework,
so follow the guidelines there. The probe() function would initialise the
platform specific parts of the hardware, like clocks, resets, GPIOs, the MDIO
bus. Also it would take care of any special PHY setup (power rails, enable
bits for internal PHYs, etc.).

Driver methods

The real work will be done in the driver method functions the driver provides
by defining the members of struct eth_ops:

struct eth_ops {
 int (*start)(struct udevice *dev);
 int (*send)(struct udevice *dev, void *packet, int length);
 int (*recv)(struct udevice *dev, int flags, uchar **packetp);
 int (*free_pkt)(struct udevice *dev, uchar *packet, int length);
 void (*stop)(struct udevice *dev);
 int (*mcast)(struct udevice *dev, const u8 *enetaddr, int join);
 int (*write_hwaddr)(struct udevice *dev);
 int (*read_rom_hwaddr)(struct udevice *dev);
};

An up-to-date version of this struct together with more information can be
found in include/net.h.

Only start, stop, send and recv are required, the rest are optional and are
handled by generic code or ignored if not provided.

The start function initialises the hardware and gets it ready for send/recv
operations. You often do things here such as resetting the MAC
and/or PHY, and waiting for the link to autonegotiate. You should also take
the opportunity to program the device’s MAC address with the enetaddr member
of the generic struct eth_pdata (which would be the first member of your
own platdata struct). This allows the rest of U-Boot to dynamically change
the MAC address and have the new settings be respected.

The send function does what you think – transmit the specified packet
whose size is specified by length (in bytes). The packet buffer can (and
will!) be reused for subsequent calls to send(), so it must be no longer
used when the send() function returns. The easiest way to achieve this is
to wait until the transmission is complete. Alternatively, if supported by
the hardware, just waiting for the buffer to be consumed (by some DMA engine)
might be an option as well.
Another way of consuming the buffer could be to copy the data to be send,
then just queue the copied packet (for instance handing it over to a DMA
engine), and return immediately afterwards.
In any case you should leave the state such that the send function can be
called multiple times in a row.

The recv function polls for availability of a new packet. If none is
available, it must return with -EAGAIN.
If a packet has been received, make sure it is accessible to the CPU
(invalidate caches if needed), then write its address to the packetp pointer,
and return the length. If there is an error (receive error, too short or too
long packet), return 0 if you require the packet to be cleaned up normally,
or a negative error code otherwise (cleanup not necessary or already done).
The U-Boot network stack will then process the packet.

If free_pkt is defined, U-Boot will call it after a received packet has
been processed, so the packet buffer can be freed or recycled. Typically you
would hand it back to the hardware to acquire another packet. free_pkt() will
be called after recv(), for the same packet, so you don’t necessarily need
to infer the buffer to free from the packet pointer, but can rely on that
being the last packet that recv() handled.
The common code sets up packet buffers for you already in the .bss
(net_rx_packets), so there should be no need to allocate your own. This doesn’t
mean you must use the net_rx_packets array however; you’re free to use any
buffer you wish.

The stop function should turn off / disable the hardware and place it back
in its reset state. It can be called at any time (before any call to the
related start() function), so make sure it can handle this sort of thing.

The (optional) write_hwaddr function should program the MAC address stored
in pdata->enetaddr into the Ethernet controller.

So the call graph at this stage would look something like:

(some net operation (ping / tftp / whatever...))
eth_init()
 ops->start()
eth_send()
 ops->send()
eth_rx()
 ops->recv()
 (process packet)
 if (ops->free_pkt)
 ops->free_pkt()
eth_halt()
 ops->stop()

CONFIG_PHYLIB / CONFIG_CMD_MII

If your device supports banging arbitrary values on the MII bus (pretty much
every device does), you should add support for the mii command. Doing so is
fairly trivial and makes debugging mii issues a lot easier at runtime.

In your driver’s probe() function, add a call to mdio_alloc() and
mdio_register() like so:

bus = mdio_alloc();
if (!bus) {
 ...
 return -ENOMEM;
}

bus->read = ape_mii_read;
bus->write = ape_mii_write;
mdio_register(bus);

And then define the mii_read and mii_write functions if you haven’t already.
Their syntax is straightforward:

int mii_read(struct mii_dev *bus, int addr, int devad, int reg);
int mii_write(struct mii_dev *bus, int addr, int devad, int reg,
 u16 val);

The read function should read the register ‘reg’ from the phy at address ‘addr’
and return the result to its caller. The implementation for the write function
should logically follow.

Legacy network drivers

!!! WARNING !!!

This section below describes the old way of doing things. No new Ethernet
drivers should be implemented this way. All new drivers should be written
against the U-Boot core driver model, as described above.

The actual callback functions are fairly similar, the differences are:

	start() is called init()

	stop() is called halt()

	The recv() function must loop until all packets have been received, for
each packet it must call the net_process_received_packet() function,
handing it over the pointer and the length. Afterwards it should free
the packet, before checking for new data.

For porting an old driver to the new driver model, split the existing recv()
function into the actual new recv() function, just fetching one packet,
remove the call to net_process_received_packet(), then move the packet
cleanup into the free_pkt() function.

Registering the driver and probing a device is handled very differently,
follow the recommendations in the driver model design documentation for
instructions on how to port this over. For the records, the old way of
initialising a network driver is as follows:

Old network driver registration

When U-Boot initializes, it will call the common function eth_initialize().
This will in turn call the board-specific board_eth_init() (or if that fails,
the cpu-specific cpu_eth_init()). These board-specific functions can do random
system handling, but ultimately they will call the driver-specific register
function which in turn takes care of initializing that particular instance.

Keep in mind that you should code the driver to avoid storing state in global
data as someone might want to hook up two of the same devices to one board.
Any such information that is specific to an interface should be stored in a
private, driver-defined data structure and pointed to by eth->priv (see below).

So the call graph at this stage would look something like:

board_init()
 eth_initialize()
 board_eth_init() / cpu_eth_init()
 driver_register()
 initialize eth_device
 eth_register()

At this point in time, the only thing you need to worry about is the driver’s
register function. The pseudo code would look something like:

int ape_register(bd_t *bis, int iobase)
{
 struct ape_priv *priv;
 struct eth_device *dev;
 struct mii_dev *bus;

 priv = malloc(sizeof(*priv));
 if (priv == NULL)
 return -ENOMEM;

 dev = malloc(sizeof(*dev));
 if (dev == NULL) {
 free(priv);
 return -ENOMEM;
 }

 /* setup whatever private state you need */

 memset(dev, 0, sizeof(*dev));
 sprintf(dev->name, "APE");

 /*
 * if your device has dedicated hardware storage for the
 * MAC, read it and initialize dev->enetaddr with it
 */
 ape_mac_read(dev->enetaddr);

 dev->iobase = iobase;
 dev->priv = priv;
 dev->init = ape_init;
 dev->halt = ape_halt;
 dev->send = ape_send;
 dev->recv = ape_recv;
 dev->write_hwaddr = ape_write_hwaddr;

 eth_register(dev);

#ifdef CONFIG_PHYLIB
 bus = mdio_alloc();
 if (!bus) {
 free(priv);
 free(dev);
 return -ENOMEM;
 }

 bus->read = ape_mii_read;
 bus->write = ape_mii_write;
 mdio_register(bus);
#endif

 return 1;
}

The exact arguments needed to initialize your device are up to you. If you
need to pass more/less arguments, that’s fine. You should also add the
prototype for your new register function to include/netdev.h.

The return value for this function should be as follows:
< 0 - failure (hardware failure, not probe failure)
>=0 - number of interfaces detected

You might notice that many drivers seem to use xxx_initialize() rather than
xxx_register(). This is the old naming convention and should be avoided as it
causes confusion with the driver-specific init function.

Other than locating the MAC address in dedicated hardware storage, you should
not touch the hardware in anyway. That step is handled in the driver-specific
init function. Remember that we are only registering the device here, we are
not checking its state or doing random probing.

Pre-relocation device tree manipulation

Purpose

In certain markets, it is beneficial for manufacturers of embedded devices to
offer certain ranges of products, where the functionality of the devices within
one series either don’t differ greatly from another, or can be thought of as
“extensions” of each other, where one device only differs from another in the
addition of a small number of features (e.g. an additional output connector).

To realize this in hardware, one method is to have a motherboard, and several
possible daughter boards that can be attached to this mother board. Different
daughter boards then either offer the slightly different functionality, or the
addition of the daughter board to the device realizes the “extension” of
functionality to the device described previously.

For the software, we obviously want to reuse components for all these
variations of the device. This means that the software somehow needs to cope
with the situation that certain ICs may or may not be present on any given
system, depending on which daughter boards are connected to the motherboard.

In the Linux kernel, one possible solution to this problem is to employ the
device tree overlay mechanism: There exists one “base” device tree, which
features only the components guaranteed to exist in all varieties of the
device. At the start of the kernel, the presence and type of the daughter
boards is then detected, and the corresponding device tree overlays are applied
to support the components on the daughter boards.

Note that the components present on every variety of the board must, of course,
provide a way to find out if and which daughter boards are installed for this
mechanism to work.

In the U-Boot boot loader, support for device tree overlays has recently been
integrated, and is used on some boards to alter the device tree that is later
passed to Linux. But since U-Boot’s driver model, which is device tree-based as
well, is being used in more and more drivers, the same problem of altering the
device tree starts cropping up in U-Boot itself as well.

An additional problem with the device tree in U-Boot is that it is read-only,
and the current mechanisms don’t allow easy manipulation of the device tree
after the driver model has been initialized. While migrating to a live device
tree (at least after the relocation) would greatly simplify the solution of
this problem, it is a non-negligible task to implement it, an a interim
solution is needed to address the problem at least in the medium-term.

Hence, we propose a solution to this problem by offering a board-specific
call-back function, which is passed a writeable pointer to the device tree.
This function is called before the device tree is relocated, and specifically
before the main U-Boot’s driver model is instantiated, hence the main U-Boot
“sees” all modifications to the device tree made in this function. Furthermore,
we have the pre-relocation driver model at our disposal at this stage, which
means that we can query the hardware for the existence and variety of the
components easily.

Implementation

To take advantage of the pre-relocation device tree manipulation mechanism,
boards have to implement the function board_fix_fdt, which has the following
signature:

int board_fix_fdt (void *rw_fdt_blob)

The passed-in void pointer is a writeable pointer to the device tree, which can
be used to manipulate the device tree using e.g. functions from
include/fdt_support.h. The return value should either be 0 in case of
successful execution of the device tree manipulation or something else for a
failure. Note that returning a non-null value from the function will
unrecoverably halt the boot process, as with any function from init_sequence_f
(in common/board_f.c).

Furthermore, the Kconfig option OF_BOARD_FIXUP has to be set for the function
to be called:

Device Tree Control
-> [*] Board-specific manipulation of Device Tree

	WARNING: The actual manipulation of the device tree has
to be the _last_ set of operations in board_fix_fdt!
Since the pre-relocation driver model does not adapt to
changes made to the device tree either, its references
into the device tree will be invalid after manipulating
it, and unpredictable behavior might occur when
functions that rely on them are executed!

Hence, the recommended layout of the board_fixup_fdt call-back function is the
following:

int board_fix_fdt(void *rw_fdt_blob)
{
 /*
 * Collect information about device's hardware and store
 * them in e.g. local variables
 */

 /* Do device tree manipulation using the values previously collected */

 /* Return 0 on successful manipulation and non-zero otherwise */
}

If this convention is kept, both an “additive” approach, meaning that nodes for
detected components are added to the device tree, as well as a “subtractive”
approach, meaning that nodes for absent components are removed from the tree,
as well as a combination of both approaches should work.

Example

The controlcenterdc board (board/gdsys/a38x/controlcenterdc.c) features a
board_fix_fdt function, in which six GPIO expanders (which might be present or
not, since they are on daughter boards) on a I2C bus are queried for, and
subsequently deactivated in the device tree if they are not present.

Note that the dm_i2c_simple_probe function does not use the device tree, hence
it is safe to call it after the tree has already been manipulated.

Work to be done

	The application of device tree overlay should be possible in board_fixup_fdt,
but has not been tested at this stage.

File System Firmware Loader

This is file system firmware loader for U-Boot framework, which has very close
to some Linux Firmware API. For the details of Linux Firmware API, you can refer
to https://01.org/linuxgraphics/gfx-docs/drm/driver-api/firmware/index.html.

File system firmware loader can be used to load whatever(firmware, image,
and binary) from the storage device in file system format into target location
such as memory, then consumer driver such as FPGA driver can program FPGA image
from the target location into FPGA.

To enable firmware loader, CONFIG_FS_LOADER need to be set at
<board_name>_defconfig such as “CONFIG_FS_LOADER=y”.

Firmware Loader API core features

Firmware storage device described in device tree source

For passing data like storage device phandle and partition where the
firmware loading from to the firmware loader driver, those data could be
defined in fs-loader node as shown in below:

Example for block device:

fs_loader0: fs-loader {
 u-boot,dm-pre-reloc;
 compatible = "u-boot,fs-loader";
 phandlepart = <&mmc 1>;
};

<&mmc 1> means block storage device pointer and its partition.

Above example is a description for block storage, but for UBI storage
device, it can be described in FDT as shown in below:

Example for ubi:

fs_loader1: fs-loader {
 u-boot,dm-pre-reloc;
 compatible = "u-boot,fs-loader";
 mtdpart = "UBI",
 ubivol = "ubi0";
};

Then, firmware-loader property can be added with any device node, which
driver would use the firmware loader for loading.

The value of the firmware-loader property should be set with phandle
of the fs-loader node. For example:

firmware-loader = <&fs_loader0>;

If there are majority of devices using the same fs-loader node, then
firmware-loader property can be added under /chosen node instead of
adding to each of device node.

For example:

/{
 chosen {
 firmware-loader = <&fs_loader0>;
 };
};

In each respective driver of devices using firmware loader, the firmware
loaded instance should be created by DT phandle.

For example of getting DT phandle from /chosen and creating instance:

chosen_node = ofnode_path("/chosen");
if (!ofnode_valid(chosen_node)) {
 debug("/chosen node was not found.\n");
 return -ENOENT;
}

phandle_p = ofnode_get_property(chosen_node, "firmware-loader", &size);
if (!phandle_p) {
 debug("firmware-loader property was not found.\n");
 return -ENOENT;
}

phandle = fdt32_to_cpu(*phandle_p);
ret = uclass_get_device_by_phandle_id(UCLASS_FS_FIRMWARE_LOADER,
 phandle, &dev);
if (ret)
 return ret;

Firmware loader driver is also designed to support U-boot environment
variables, so all these data from FDT can be overwritten
through the U-boot environment variable during run time.

For examples:

	storage_interface:

	Storage interface, it can be “mmc”, “usb”, “sata” or “ubi”.

	fw_dev_part:

	Block device number and its partition, it can be “0:1”.

	fw_ubi_mtdpart:

	UBI device mtd partition, it can be “UBI”.

	fw_ubi_volume:

	UBI volume, it can be “ubi0”.

When above environment variables are set, environment values would be
used instead of data from FDT.
The benefit of this design allows user to change storage attribute data
at run time through U-boot console and saving the setting as default
environment values in the storage for the next power cycle, so no
compilation is required for both driver and FDT.

File system firmware Loader API

int request_firmware_into_buf(struct udevice *dev,
 const char *name,
 void *buf, size_t size, u32 offset)

Load firmware into a previously allocated buffer

Parameters:

	struct udevice *dev: An instance of a driver

	const char *name: name of firmware file

	void *buf: address of buffer to load firmware into

	size_t size: size of buffer

	u32 offset: offset of a file for start reading into buffer

	Returns:

	size of total read
-ve when error

	Description:

	The firmware is loaded directly into the buffer pointed to by buf

Example of calling request_firmware_into_buf API after creating firmware loader
instance:

ret = uclass_get_device_by_phandle_id(UCLASS_FS_FIRMWARE_LOADER,
 phandle, &dev);
if (ret)
 return ret;

request_firmware_into_buf(dev, filename, buffer_location, buffer_size,
 offset_ofreading);

How to port an I2C driver to driver model

Over half of the I2C drivers have been converted as at November 2016. These
ones remain:

	adi_i2c

	davinci_i2c

	fti2c010

	ihs_i2c

	kona_i2c

	lpc32xx_i2c

	pca9564_i2c

	ppc4xx_i2c

	rcar_i2c

	sh_i2c

	soft_i2c

	zynq_i2c

The deadline for this work is the end of June 2017. If no one steps
forward to convert these, at some point there may come a patch to remove them!

Here is a suggested approach for converting your I2C driver over to driver
model. Please feel free to update this file with your ideas and suggestions.

	#ifdef out all your own I2C driver code (#ifndef CONFIG_DM_I2C)

	Define CONFIG_DM_I2C for your board, vendor or architecture

	If the board does not already use driver model, you need CONFIG_DM also

	Your board should then build, but will not work fully since there will be
no I2C driver

	Add the U_BOOT_DRIVER piece at the end (e.g. copy tegra_i2c.c for example)

	Add a private struct for the driver data - avoid using static variables

	Implement each of the driver methods, perhaps by calling your old methods

	You may need to adjust the function parameters so that the old and new
implementations can share most of the existing code

	If you convert all existing users of the driver, remove the pre-driver-model
code

In terms of patches a conversion series typically has these patches:
- clean up / prepare the driver for conversion
- add driver model code
- convert at least one existing board to use driver model serial
- (if no boards remain that don’t use driver model) remove the old code

This may be a good time to move your board to use device tree also. Mostly
this involves these steps:

	define CONFIG_OF_CONTROL and CONFIG_OF_SEPARATE

	add your device tree files to arch/<arch>/dts

	update the Makefile there

	Add stdout-path to your /chosen device tree node if it is not already there

	build and get u-boot-dtb.bin so you can test it

	Your drivers can now use device tree

	For device tree in SPL, define CONFIG_SPL_OF_CONTROL

Live Device Tree

Introduction

Traditionally U-Boot has used a ‘flat’ device tree. This means that it
reads directly from the device tree binary structure. It is called a flat
device tree because nodes are listed one after the other, with the
hierarchy detected by tags in the format.

This document describes U-Boot’s support for a ‘live’ device tree, meaning
that the tree is loaded into a hierarchical data structure within U-Boot.

Motivation

The flat device tree has several advantages:

	it is the format produced by the device tree compiler, so no translation
is needed

	it is fairly compact (e.g. there is no need for pointers)

	it is accessed by the libfdt library, which is well tested and stable

However the flat device tree does have some limitations. Adding new
properties can involve copying large amounts of data around to make room.
The overall tree has a fixed maximum size so sometimes the tree must be
rebuilt in a new location to create more space. Even if not adding new
properties or nodes, scanning the tree can be slow. For example, finding
the parent of a node is a slow process. Reading from nodes involves a
small amount parsing which takes a little time.

Driver model scans the entire device tree sequentially on start-up which
avoids the worst of the flat tree’s limitations. But if the tree is to be
modified at run-time, a live tree is much faster. Even if no modification
is necessary, parsing the tree once and using a live tree from then on
seems to save a little time.

Implementation

In U-Boot a live device tree (‘livetree’) is currently supported only
after relocation. Therefore we need a mechanism to specify a device
tree node regardless of whether it is in the flat tree or livetree.

The ‘ofnode’ type provides this. An ofnode can point to either a flat tree
node (when the live tree node is not yet set up) or a livetree node. The
caller of an ofnode function does not need to worry about these details.

The main users of the information in a device tree are drivers. These have
a ‘struct udevice *’ which is attached to a device tree node. Therefore it
makes sense to be able to read device tree properties using the
‘struct udevice *’, rather than having to obtain the ofnode first.

The ‘dev_read_…()’ interface provides this. It allows properties to be
easily read from the device tree using only a device pointer. Under the
hood it uses ofnode so it works with both flat and live device trees.

Enabling livetree

CONFIG_OF_LIVE enables livetree. When this option is enabled, the flat
tree will be used in SPL and before relocation in U-Boot proper. Just
before relocation a livetree is built, and this is used for U-Boot proper
after relocation.

Most checks for livetree use CONFIG_IS_ENABLED(OF_LIVE). This means that
for SPL, the CONFIG_SPL_OF_LIVE option is checked. At present this does
not exist, since SPL does not support livetree.

Porting drivers

Many existing drivers use the fdtdec interface to read device tree
properties. This only works with a flat device tree. The drivers should be
converted to use the dev_read_() interface.

For example, the old code may be like this:

struct udevice *bus;
const void *blob = gd->fdt_blob;
int node = dev_of_offset(bus);

i2c_bus->regs = (struct i2c_ctlr *)devfdt_get_addr(dev);
plat->frequency = fdtdec_get_int(blob, node, "spi-max-frequency", 500000);

The new code is:

struct udevice *bus;

i2c_bus->regs = (struct i2c_ctlr *)dev_read_addr(dev);
plat->frequency = dev_read_u32_default(bus, "spi-max-frequency", 500000);

The dev_read_…() interface is more convenient and works with both the
flat and live device trees. See include/dm/read.h for a list of functions.

Where properties must be read from sub-nodes or other nodes, you must fall
back to using ofnode. For example, for old code like this:

const void *blob = gd->fdt_blob;
int subnode;

fdt_for_each_subnode(subnode, blob, dev_of_offset(dev)) {
 freq = fdtdec_get_int(blob, node, "spi-max-frequency", 500000);
 ...
}

you should use:

ofnode subnode;

ofnode_for_each_subnode(subnode, dev_ofnode(dev)) {
 freq = ofnode_read_u32(node, "spi-max-frequency", 500000);
 ...
}

Useful ofnode functions

The internal data structures of the livetree are defined in include/dm/of.h :

	struct device_node

	holds information about a device tree node

	struct property

	holds information about a property within a node

Nodes have pointers to their first property, their parent, their first child
and their sibling. This allows nodes to be linked together in a hierarchical
tree.

Properties have pointers to the next property. This allows all properties of
a node to be linked together in a chain.

It should not be necessary to use these data structures in normal code. In
particular, you should refrain from using functions which access the livetree
directly, such as of_read_u32(). Use ofnode functions instead, to allow your
code to work with a flat tree also.

Some conversion functions are used internally. Generally these are not needed
for driver code. Note that they will not work if called in the wrong context.
For example it is invalid to call ofnode_to_no() when a flat tree is being
used. Similarly it is not possible to call ofnode_to_offset() on a livetree
node.

	ofnode_to_np():

	converts ofnode to struct device_node *

	ofnode_to_offset():

	converts ofnode to offset

	no_to_ofnode():

	converts node pointer to ofnode

	offset_to_ofnode():

	converts offset to ofnode

Other useful functions:

	of_live_active():

	returns true if livetree is in use, false if flat tree

	ofnode_valid():

	return true if a given node is valid

	ofnode_is_np():

	returns true if a given node is a livetree node

	ofnode_equal():

	compares two ofnodes

	ofnode_null():

	returns a null ofnode (for which ofnode_valid() returns false)

Phandles

There is full phandle support for live tree. All functions make use of
struct ofnode_phandle_args, which has an ofnode within it. This supports both
livetree and flat tree transparently. See for example
ofnode_parse_phandle_with_args().

Reading addresses

You should use dev_read_addr() and friends to read addresses from device-tree
nodes.

fdtdec

The existing fdtdec interface will eventually be retired. Please try to avoid
using it in new code.

Modifying the livetree

This is not currently supported. Once implemented it should provide a much
more efficient implementation for modification of the device tree than using
the flat tree.

Internal implementation

The dev_read_…() functions have two implementations. When
CONFIG_DM_DEV_READ_INLINE is enabled, these functions simply call the ofnode
functions directly. This is useful when livetree is not enabled. The ofnode
functions call ofnode_is_np(node) which will always return false if livetree
is disabled, just falling back to flat tree code.

This optimisation means that without livetree enabled, the dev_read_…() and
ofnode interfaces do not noticeably add to code size.

The CONFIG_DM_DEV_READ_INLINE option defaults to enabled when livetree is
disabled.

Most livetree code comes directly from Linux and is modified as little as
possible. This is deliberate since this code is fairly stable and does what
we want. Some features (such as get/put) are not supported. Internal macros
take care of removing these features silently.

Within the of_access.c file there are pointers to the alias node, the chosen
node and the stdout-path alias.

Errors

With a flat device tree, libfdt errors are returned (e.g. -FDT_ERR_NOTFOUND).
For livetree normal ‘errno’ errors are returned (e.g. -ENOTFOUND). At present
the ofnode and dev_read_…() functions return either one or other type of
error. This is clearly not desirable. Once tests are added for all the
functions this can be tidied up.

Adding new access functions

Adding a new function for device-tree access involves the following steps:

	
	Add two dev_read() functions:

	
	inline version in the read.h header file, which calls an ofnode function

	standard version in the read.c file (or perhaps another file), which
also calls an ofnode function

The implementations of these functions can be the same. The purpose
of the inline version is purely to reduce code size impact.

	Add an ofnode function. This should call ofnode_is_np() to work out
whether a livetree or flat tree is used. For the livetree it should
call an of_…() function. For the flat tree it should call an
fdt_…() function. The livetree version will be optimised out at
compile time if livetree is not enabled.

	Add an of_…() function for the livetree implementation. If a similar
function is available in Linux, the implementation should be taken
from there and modified as little as possible (generally not at all).

Future work

Live tree support was introduced in U-Boot 2017.07. There is still quite a bit
of work to do to flesh this out:

	tests for all access functions

	support for livetree modification

	addition of more access functions as needed

	support for livetree in SPL and before relocation (if desired)

Migration Schedule

U-Boot has been migrating to a new driver model since its introduction in
2014. This file describes the schedule for deprecation of pre-driver-model
features.

CONFIG_DM

	Status: In progress

	Deadline: 2020.01

Starting with the 2010.01 release CONFIG_DM will be enabled for all boards.
This does not concern CONFIG_DM_SPL and CONFIG_DM_TPL. The conversion date for
these configuration items still needs to be defined.

CONFIG_DM_MMC

	Status: In progress

	Deadline: 2019.04

The subsystem itself has been converted and maintainers should submit patches
switching over to using CONFIG_DM_MMC and other base driver model options in
time for inclusion in the 2019.04 rerelease.

CONFIG_DM_USB

	Status: In progress

	Deadline: 2019.07

The subsystem itself has been converted along with many of the host controller
and maintainers should submit patches switching over to using CONFIG_DM_USB and
other base driver model options in time for inclusion in the 2019.07 rerelease.

CONFIG_SATA

	Status: In progress

	Deadline: 2019.07

The subsystem itself has been converted along with many of the host controller
and maintainers should submit patches switching over to using CONFIG_AHCI and
other base driver model options in time for inclusion in the 2019.07 rerelease.

CONFIG_BLK

	Status: In progress

	Deadline: 2019.07

In concert with maintainers migrating their block device usage to the
appropriate DM driver, CONFIG_BLK needs to be set as well. The final deadline
here coincides with the final deadline for migration of the various block
subsystems. At this point we will be able to audit and correct the logic in
Kconfig around using CONFIG_PARTITIONS and CONFIG_HAVE_BLOCK_DEVICE and make
use of CONFIG_BLK / CONFIG_SPL_BLK as needed.

CONFIG_DM_SPI / CONFIG_DM_SPI_FLASH

Board Maintainers should submit the patches for enabling DM_SPI and DM_SPI_FLASH
to move the migration with in the deadline.

No dm conversion yet:

drivers/spi/fsl_espi.c
drivers/spi/lpc32xx_ssp.c
drivers/spi/sh_spi.c
drivers/spi/soft_spi_legacy.c

	Status: In progress

	Deadline: 2019.04

Partially converted:

drivers/spi/davinci_spi.c
drivers/spi/fsl_dspi.c
drivers/spi/kirkwood_spi.c
drivers/spi/mxc_spi.c
drivers/spi/mxs_spi.c
drivers/spi/omap3_spi.c
drivers/spi/sh_qspi.c

	Status: In progress

	Deadline: 2019.07

CONFIG_DM_PCI

Deadline: 2019.07

The PCI subsystem has supported driver model since mid 2015. Maintainers should
submit patches switching over to using CONFIG_DM_PCI and other base driver
model options in time for inclusion in the 2019.07 release.

CONFIG_DM_VIDEO

Deadline: 2019.07

The video subsystem has supported driver model since early 2016. Maintainers
should submit patches switching over to using CONFIG_DM_VIDEO and other base
driver model options in time for inclusion in the 2019.07 release.

CONFIG_DM_ETH

Deadline: 2020.07

The network subsystem has supported the driver model since early 2015.
Maintainers should submit patches switching over to using CONFIG_DM_ETH and
other base driver model options in time for inclusion in the 2020.07 release.

Compiled-in Device Tree / Platform Data

Introduction

Device tree is the standard configuration method in U-Boot. It is used to
define what devices are in the system and provide configuration information
to these devices.

The overhead of adding device tree access to U-Boot is fairly modest,
approximately 3KB on Thumb 2 (plus the size of the DT itself). This means
that in most cases it is best to use device tree for configuration.

However there are some very constrained environments where U-Boot needs to
work. These include SPL with severe memory limitations. For example, some
SoCs require a 16KB SPL image which must include a full MMC stack. In this
case the overhead of device tree access may be too great.

It is possible to create platform data manually by defining C structures
for it, and reference that data in a U_BOOT_DEVICE() declaration. This
bypasses the use of device tree completely, effectively creating a parallel
configuration mechanism. But it is an available option for SPL.

As an alternative, a new ‘of-platdata’ feature is provided. This converts the
device tree contents into C code which can be compiled into the SPL binary.
This saves the 3KB of code overhead and perhaps a few hundred more bytes due
to more efficient storage of the data.

Note: Quite a bit of thought has gone into the design of this feature.
However it still has many rough edges and comments and suggestions are
strongly encouraged! Quite possibly there is a much better approach.

Caveats

There are many problems with this features. It should only be used when
strictly necessary. Notable problems include:

	Device tree does not describe data types. But the C code must define a
type for each property. These are guessed using heuristics which
are wrong in several fairly common cases. For example an 8-byte value
is considered to be a 2-item integer array, and is byte-swapped. A
boolean value that is not present means ‘false’, but cannot be
included in the structures since there is generally no mention of it
in the device tree file.

	Naming of nodes and properties is automatic. This means that they follow
the naming in the device tree, which may result in C identifiers that
look a bit strange.

	It is not possible to find a value given a property name. Code must use
the associated C member variable directly in the code. This makes
the code less robust in the face of device-tree changes. It also
makes it very unlikely that your driver code will be useful for more
than one SoC. Even if the code is common, each SoC will end up with
a different C struct name, and a likely a different format for the
platform data.

	The platform data is provided to drivers as a C structure. The driver
must use the same structure to access the data. Since a driver
normally also supports device tree it must use #ifdef to separate
out this code, since the structures are only available in SPL.

	Correct relations between nodes are not implemented. This means that
parent/child relations (like bus device iteration) do not work yet.
Some phandles (those that are recognised as such) are converted into
a pointer to platform data. This pointer can potentially be used to
access the referenced device (by searching for the pointer value).
This feature is not yet implemented, however.

How it works

The feature is enabled by CONFIG OF_PLATDATA. This is only available in
SPL/TPL and should be tested with:

#if CONFIG_IS_ENABLED(OF_PLATDATA)

A new tool called ‘dtoc’ converts a device tree file either into a set of
struct declarations, one for each compatible node, and a set of
U_BOOT_DEVICE() declarations along with the actual platform data for each
device. As an example, consider this MMC node:

sdmmc: dwmmc@ff0c0000 {
 compatible = "rockchip,rk3288-dw-mshc";
 clock-freq-min-max = <400000 150000000>;
 clocks = <&cru HCLK_SDMMC>, <&cru SCLK_SDMMC>,
 <&cru SCLK_SDMMC_DRV>, <&cru SCLK_SDMMC_SAMPLE>;
 clock-names = "biu", "ciu", "ciu_drv", "ciu_sample";
 fifo-depth = <0x100>;
 interrupts = <GIC_SPI 32 IRQ_TYPE_LEVEL_HIGH>;
 reg = <0xff0c0000 0x4000>;
 bus-width = <4>;
 cap-mmc-highspeed;
 cap-sd-highspeed;
 card-detect-delay = <200>;
 disable-wp;
 num-slots = <1>;
 pinctrl-names = "default";
 pinctrl-0 = <&sdmmc_clk>, <&sdmmc_cmd>, <&sdmmc_cd>, <&sdmmc_bus4>;
 vmmc-supply = <&vcc_sd>;
 status = "okay";
 u-boot,dm-pre-reloc;
 };

Some of these properties are dropped by U-Boot under control of the
CONFIG_OF_SPL_REMOVE_PROPS option. The rest are processed. This will produce
the following C struct declaration:

struct dtd_rockchip_rk3288_dw_mshc {
 fdt32_t bus_width;
 bool cap_mmc_highspeed;
 bool cap_sd_highspeed;
 fdt32_t card_detect_delay;
 fdt32_t clock_freq_min_max[2];
 struct phandle_1_arg clocks[4];
 bool disable_wp;
 fdt32_t fifo_depth;
 fdt32_t interrupts[3];
 fdt32_t num_slots;
 fdt32_t reg[2];
 fdt32_t vmmc_supply;
};

and the following device declaration:

static struct dtd_rockchip_rk3288_dw_mshc dtv_dwmmc_at_ff0c0000 = {
 .fifo_depth = 0x100,
 .cap_sd_highspeed = true,
 .interrupts = {0x0, 0x20, 0x4},
 .clock_freq_min_max = {0x61a80, 0x8f0d180},
 .vmmc_supply = 0xb,
 .num_slots = 0x1,
 .clocks = {{&dtv_clock_controller_at_ff760000, 456},
 {&dtv_clock_controller_at_ff760000, 68},
 {&dtv_clock_controller_at_ff760000, 114},
 {&dtv_clock_controller_at_ff760000, 118}},
 .cap_mmc_highspeed = true,
 .disable_wp = true,
 .bus_width = 0x4,
 .u_boot_dm_pre_reloc = true,
 .reg = {0xff0c0000, 0x4000},
 .card_detect_delay = 0xc8,
};

U_BOOT_DEVICE(dwmmc_at_ff0c0000) = {
 .name = "rockchip_rk3288_dw_mshc",
 .platdata = &dtv_dwmmc_at_ff0c0000,
 .platdata_size = sizeof(dtv_dwmmc_at_ff0c0000),
};

The device is then instantiated at run-time and the platform data can be
accessed using:

struct udevice *dev;
struct dtd_rockchip_rk3288_dw_mshc *plat = dev_get_platdata(dev);

This avoids the code overhead of converting the device tree data to
platform data in the driver. The ofdata_to_platdata() method should
therefore do nothing in such a driver.

Note that for the platform data to be matched with a driver, the ‘name’
property of the U_BOOT_DEVICE() declaration has to match a driver declared
via U_BOOT_DRIVER(). This effectively means that a U_BOOT_DRIVER() with a
‘name’ corresponding to the devicetree ‘compatible’ string (after converting
it to a valid name for C) is needed, so a dedicated driver is required for
each ‘compatible’ string.

Where a node has multiple compatible strings, a #define is used to make them
equivalent, e.g.:

#define dtd_rockchip_rk3299_dw_mshc dtd_rockchip_rk3288_dw_mshc

Converting of-platdata to a useful form

Of course it would be possible to use the of-platdata directly in your driver
whenever configuration information is required. However this means that the
driver will not be able to support device tree, since the of-platdata
structure is not available when device tree is used. It would make no sense
to use this structure if device tree were available, since the structure has
all the limitations metioned in caveats above.

Therefore it is recommended that the of-platdata structure should be used
only in the probe() method of your driver. It cannot be used in the
ofdata_to_platdata() method since this is not called when platform data is
already present.

How to structure your driver

Drivers should always support device tree as an option. The of-platdata
feature is intended as a add-on to existing drivers.

Your driver should convert the platdata struct in its probe() method. The
existing device tree decoding logic should be kept in the
ofdata_to_platdata() method and wrapped with #if.

For example:

#include <dt-structs.h>

struct mmc_platdata {
#if CONFIG_IS_ENABLED(OF_PLATDATA)
 /* Put this first since driver model will copy the data here */
 struct dtd_mmc dtplat;
#endif
 /*
 * Other fields can go here, to be filled in by decoding from
 * the device tree (or the C structures when of-platdata is used).
 */
 int fifo_depth;
};

static int mmc_ofdata_to_platdata(struct udevice *dev)
{
#if !CONFIG_IS_ENABLED(OF_PLATDATA)
 /* Decode the device tree data */
 struct mmc_platdata *plat = dev_get_platdata(dev);
 const void *blob = gd->fdt_blob;
 int node = dev_of_offset(dev);

 plat->fifo_depth = fdtdec_get_int(blob, node, "fifo-depth", 0);
#endif

 return 0;
}

static int mmc_probe(struct udevice *dev)
{
 struct mmc_platdata *plat = dev_get_platdata(dev);

#if CONFIG_IS_ENABLED(OF_PLATDATA)
 /* Decode the of-platdata from the C structures */
 struct dtd_mmc *dtplat = &plat->dtplat;

 plat->fifo_depth = dtplat->fifo_depth;
#endif
 /* Set up the device from the plat data */
 writel(plat->fifo_depth, ...)
}

static const struct udevice_id mmc_ids[] = {
 { .compatible = "vendor,mmc" },
 { }
};

U_BOOT_DRIVER(mmc_drv) = {
 .name = "vendor_mmc", /* matches compatible string */
 .id = UCLASS_MMC,
 .of_match = mmc_ids,
 .ofdata_to_platdata = mmc_ofdata_to_platdata,
 .probe = mmc_probe,
 .priv_auto_alloc_size = sizeof(struct mmc_priv),
 .platdata_auto_alloc_size = sizeof(struct mmc_platdata),
};

Note that struct mmc_platdata is defined in the C file, not in a header. This
is to avoid needing to include dt-structs.h in a header file. The idea is to
keep the use of each of-platdata struct to the smallest possible code area.
There is just one driver C file for each struct, that can convert from the
of-platdata struct to the standard one used by the driver.

In the case where SPL_OF_PLATDATA is enabled, platdata_auto_alloc_size is
still used to allocate space for the platform data. This is different from
the normal behaviour and is triggered by the use of of-platdata (strictly
speaking it is a non-zero platdata_size which triggers this).

The of-platdata struct contents is copied from the C structure data to the
start of the newly allocated area. In the case where device tree is used,
the platform data is allocated, and starts zeroed. In this case the
ofdata_to_platdata() method should still set up the platform data (and the
of-platdata struct will not be present).

SPL must use either of-platdata or device tree. Drivers cannot use both at
the same time, but they must support device tree. Supporting of-platdata is
optional.

The device tree becomes in accessible when CONFIG_SPL_OF_PLATDATA is enabled,
since the device-tree access code is not compiled in. A corollary is that
a board can only move to using of-platdata if all the drivers it uses support
it. There would be little point in having some drivers require the device
tree data, since then libfdt would still be needed for those drivers and
there would be no code-size benefit.

Internals

The dt-structs.h file includes the generated file
(include/generated//dt-structs.h) if CONFIG_SPL_OF_PLATDATA is enabled.
Otherwise (such as in U-Boot proper) these structs are not available. This
prevents them being used inadvertently. All usage must be bracketed with
#if CONFIG_IS_ENABLED(OF_PLATDATA).

The dt-platdata.c file contains the device declarations and is is built in
spl/dt-platdata.c.

The beginnings of a libfdt Python module are provided. So far this only
implements a subset of the features.

The ‘swig’ tool is needed to build the libfdt Python module. If this is not
found then the Python model is not used and a fallback is used instead, which
makes use of fdtget.

Credits

This is an implementation of an idea by Tom Rini <trini@konsulko.com>.

Future work

	Consider programmatically reading binding files instead of device tree
contents

	Complete the phandle feature

	Move to using a full Python libfdt module

PCI with Driver Model

How busses are scanned

Any config read will end up at pci_read_config(). This uses
uclass_get_device_by_seq() to get the PCI bus for a particular bus number.
Bus number 0 will need to be requested first, and the alias in the device
tree file will point to the correct device:

aliases {
 pci0 = &pci;
};

pci: pci-controller {
 compatible = "sandbox,pci";
 ...
};

If there is no alias the devices will be numbered sequentially in the device
tree.

The call to uclass_get_device() will cause the PCI bus to be probed.
This does a scan of the bus to locate available devices. These devices are
bound to their appropriate driver if available. If there is no driver, then
they are bound to a generic PCI driver which does nothing.

After probing a bus, the available devices will appear in the device tree
under that bus.

Note that this is all done on a lazy basis, as needed, so until something is
touched on PCI (eg: a call to pci_find_devices()) it will not be probed.

PCI devices can appear in the flattened device tree. If they do, their node
often contains extra information which cannot be derived from the PCI IDs or
PCI class of the device. Each PCI device node must have a <reg> property, as
defined by the IEEE Std 1275-1994 PCI bus binding document v2.1. Compatible
string list is optional and generally not needed, since PCI is discoverable
bus, albeit there are justified exceptions. If the compatible string is
present, matching on it takes precedence over PCI IDs and PCI classes.

Note we must describe PCI devices with the same bus hierarchy as the
hardware, otherwise driver model cannot detect the correct parent/children
relationship during PCI bus enumeration thus PCI devices won’t be bound to
their drivers accordingly. A working example like below:

pci {
 #address-cells = <3>;
 #size-cells = <2>;
 compatible = "pci-x86";
 u-boot,dm-pre-reloc;
 ranges = <0x02000000 0x0 0x40000000 0x40000000 0 0x80000000
 0x42000000 0x0 0xc0000000 0xc0000000 0 0x20000000
 0x01000000 0x0 0x2000 0x2000 0 0xe000>;

 pcie@17,0 {
 #address-cells = <3>;
 #size-cells = <2>;
 compatible = "pci-bridge";
 u-boot,dm-pre-reloc;
 reg = <0x0000b800 0x0 0x0 0x0 0x0>;

 topcliff@0,0 {
 #address-cells = <3>;
 #size-cells = <2>;
 compatible = "pci-bridge";
 u-boot,dm-pre-reloc;
 reg = <0x00010000 0x0 0x0 0x0 0x0>;

 pciuart0: uart@a,1 {
 compatible = "pci8086,8811.00",
 "pci8086,8811",
 "pciclass,070002",
 "pciclass,0700",
 "x86-uart";
 u-boot,dm-pre-reloc;
 reg = <0x00025100 0x0 0x0 0x0 0x0
 0x01025110 0x0 0x0 0x0 0x0>;

 };

 };
 };

};

In this example, the root PCI bus node is the “/pci” which matches “pci-x86”
driver. It has a subnode “pcie@17,0” with driver “pci-bridge”. “pcie@17,0”
also has subnode “topcliff@0,0” which is a “pci-bridge” too. Under that bridge,
a PCI UART device “uart@a,1” is described. This exactly reflects the hardware
bus hierarchy: on the root PCI bus, there is a PCIe root port which connects
to a downstream device Topcliff chipset. Inside Topcliff chipset, it has a
PCIe-to-PCI bridge and all the chipset integrated devices like the PCI UART
device are on the PCI bus. Like other devices in the device tree, if we want
to bind PCI devices before relocation, “u-boot,dm-pre-reloc” must be declared
in each of these nodes.

If PCI devices are not listed in the device tree, U_BOOT_PCI_DEVICE can be used
to specify the driver to use for the device. The device tree takes precedence
over U_BOOT_PCI_DEVICE. Please note with U_BOOT_PCI_DEVICE, only drivers with
DM_FLAG_PRE_RELOC will be bound before relocation. If neither device tree nor
U_BOOT_PCI_DEVICE is provided, the built-in driver (either pci_bridge_drv or
pci_generic_drv) will be used.

Sandbox

With sandbox we need a device emulator for each device on the bus since there
is no real PCI bus. This works by looking in the device tree node for an
emulator driver. For example:

pci@1f,0 {
 compatible = "pci-generic";
 reg = <0xf800 0 0 0 0>;
 sandbox,emul = <&emul_1f>;
};
pci-emul {
 compatible = "sandbox,pci-emul-parent";
 emul_1f: emul@1f,0 {
 compatible = "sandbox,swap-case";
 };
};

This means that there is a ‘sandbox,swap-case’ driver at that bus position.
Note that the first cell in the ‘reg’ value is the bus/device/function. See
PCI_BDF() for the encoding (it is also specified in the IEEE Std 1275-1994
PCI bus binding document, v2.1)

The pci-emul node should go outside the pci bus node, since otherwise it will
be scanned as a PCI device, causing confusion.

When this bus is scanned we will end up with something like this:

`- * pci-controller @ 05c660c8, 0
 `- pci@1f,0 @ 05c661c8, 63488
`- emul@1f,0 @ 05c662c8

When accesses go to the pci@1f,0 device they are forwarded to its emulator.

The sandbox PCI drivers also support dynamic driver binding, allowing device
driver to declare the driver binding information via U_BOOT_PCI_DEVICE(),
eliminating the need to provide any device tree node under the host controller
node. It is required a “sandbox,dev-info” property must be provided in the
host controller node for this functionality to work.

pci1: pci-controller1 {
 compatible = "sandbox,pci";
 ...
 sandbox,dev-info = <0x08 0x00 0x1234 0x5678
 0x0c 0x00 0x1234 0x5678>;
};

The “sandbox,dev-info” property specifies all dynamic PCI devices on this bus.
Each dynamic PCI device is encoded as 4 cells a group. The first and second
cells are PCI device number and function number respectively. The third and
fourth cells are PCI vendor ID and device ID respectively.

When this bus is scanned we will end up with something like this:

pci [+] pci_sandbo |-- pci-controller1
pci_emul [] sandbox_sw | |-- sandbox_swap_case_emul
pci_emul [] sandbox_sw | `-- sandbox_swap_case_emul

PMIC framework based on Driver Model

Introduction

This is an introduction to driver-model multi uclass PMIC IC’s support.
At present it’s based on two uclass types:

	UCLASS_PMIC:

	basic uclass type for PMIC I/O, which provides common
read/write interface.

	UCLASS_REGULATOR:

	additional uclass type for specific PMIC features, which are
Voltage/Current regulators.

New files:

	UCLASS_PMIC:

	
	drivers/power/pmic/pmic-uclass.c

	include/power/pmic.h

	UCLASS_REGULATOR:

	
	drivers/power/regulator/regulator-uclass.c

	include/power/regulator.h

Commands:
- common/cmd_pmic.c
- common/cmd_regulator.c

How doees it work

The Power Management Integrated Circuits (PMIC) are used in embedded systems
to provide stable, precise and specific voltage power source with over-voltage
and thermal protection circuits.

The single PMIC can provide various functions by single or multiple interfaces,
like in the example below:

-- SoC
 |
 | ______________________________________
 | BUS 0 | Multi interface PMIC IC |--> LDO out 1
 | e.g.I2C0 | |--> LDO out N
 |-----------|---- PMIC device 0 (READ/WRITE ops) |
 | or SPI0 | |_ REGULATOR device (ldo/... ops) |--> BUCK out 1
 | | |_ CHARGER device (charger ops) |--> BUCK out M
 | | |_ MUIC device (microUSB con ops) |
 | BUS 1 | |_ ... |---> BATTERY
 | e.g.I2C1 | |
 |-----------|---- PMIC device 1 (READ/WRITE ops) |---> USB in 1
 . or SPI1 | |_ RTC device (rtc ops) |---> USB in 2
 . |______________________________________|---> USB out
 .

Since U-Boot provides driver model features for I2C and SPI bus drivers,
the PMIC devices should also support this. By the pmic and regulator API’s,
PMIC drivers can simply provide a common functions, for multi-interface and
and multi-instance device support.

Basic design assumptions:

	
	Common I/O API:

	UCLASS_PMIC. For the multi-function PMIC devices, this can be used as
parent I/O device for each IC’s interface. Then, each children uses the
same dev for read/write.

	
	Common regulator API:

	UCLASS_REGULATOR. For driving the regulator attributes, auto setting
function or command line interface, based on kernel-style regulator device
tree constraints.

For simple implementations, regulator drivers are not required, so the code can
use pmic read/write directly.

Pmic uclass

The basic information:

	Uclass: ‘UCLASS_PMIC’

	Header: ‘include/power/pmic.h’

	Core: ‘drivers/power/pmic/pmic-uclass.c’ (config ‘CONFIG_DM_PMIC’)

	Command: ‘common/cmd_pmic.c’ (config ‘CONFIG_CMD_PMIC’)

	Example: ‘drivers/power/pmic/max77686.c’

For detailed API description, please refer to the header file.

As an example of the pmic driver, please refer to the MAX77686 driver.

Please pay attention for the driver’s bind() method. Exactly the function call:
‘pmic_bind_children()’, which is used to bind the regulators by using the array
of regulator’s node, compatible prefixes.

The ‘pmic; command also supports the new API. So the pmic command can be enabled
by adding CONFIG_CMD_PMIC.
The new pmic command allows to:
- list pmic devices
- choose the current device (like the mmc command)
- read or write the pmic register
- dump all pmic registers

This command can use only UCLASS_PMIC devices, since this uclass is designed
for pmic I/O operations only.

For more information, please refer to the core file.

Regulator uclass

The basic information:

	Uclass: ‘UCLASS_REGULATOR’

	Header: ‘include/power/regulator.h’

	Core: ‘drivers/power/regulator/regulator-uclass.c’
(config ‘CONFIG_DM_REGULATOR’)

	Binding: ‘doc/device-tree-bindings/regulator/regulator.txt’

	Command: ‘common/cmd_regulator.c’ (config ‘CONFIG_CMD_REGULATOR’)

	Example: ‘drivers/power/regulator/max77686.c’
‘drivers/power/pmic/max77686.c’ (required I/O driver for the above)

	Example: ‘drivers/power/regulator/fixed.c’
(config ‘CONFIG_DM_REGULATOR_FIXED’)

For detailed API description, please refer to the header file.

For the example regulator driver, please refer to the MAX77686 regulator driver,
but this driver can’t operate without pmic’s example driver, which provides an
I/O interface for MAX77686 regulator.

The second example is a fixed Voltage/Current regulator for a common use.

The ‘regulator’ command also supports the new API. The command allow:
- list regulator devices
- choose the current device (like the mmc command)
- do all regulator-specific operations

For more information, please refer to the command file.

Remote Processor Framework

Introduction

This is an introduction to driver-model for Remote Processors found
on various System on Chip(SoCs). The term remote processor is used to
indicate that this is not the processor on which U-Boot is operating
on, instead is yet another processing entity that may be controlled by
the processor on which we are functional.

The simplified model depends on a single UCLASS - UCLASS_REMOTEPROC

	UCLASS_REMOTEPROC:

	
	drivers/remoteproc/rproc-uclass.c

	include/remoteproc.h

	Commands:

	
	common/cmd_remoteproc.c

	Configuration:

	
	CONFIG_REMOTEPROC is selected by drivers as needed

	CONFIG_CMD_REMOTEPROC for the commands if required.

How does it work - The driver

Overall, the driver statemachine transitions are typically as follows:

 (entry)
 +-------+
 +---+ init |
 | | | <---------------------+
 | +-------+ |
 | |
 | |
 | +--------+ |
Load| | reset | |
 | | | <----------+ |
 | +--------+ | |
 | |Load | |
 | | | |
 | +----v----+ reset | |
 +-> | | (opt) | |
 | Loaded +-----------+ |
 | | |
 +----+----+ |
 | Start |
 +---v-----+ (opt) |
 +->| Running | Stop |
Ping +- | +--------------------+
(opt) +---------+

(is_running does not change state)
opt: Optional state transition implemented by driver.

NOTE: It depends on the remote processor as to the exact behavior
of the statemachine, remoteproc core does not intent to implement
statemachine logic. Certain processors may allow start/stop without
reloading the image in the middle, certain other processors may only
allow us to start the processor(image from a EEPROM/OTP) etc.

It is hence the responsibility of the driver to handle the requisite
state transitions of the device as necessary.

Basic design assumptions:

Remote processor can operate on a certain firmware that maybe loaded
and released from reset.

The driver follows a standard UCLASS DM.

in the bare minimum form:

static const struct dm_rproc_ops sandbox_testproc_ops = {
 .load = sandbox_testproc_load,
 .start = sandbox_testproc_start,
};

static const struct udevice_id sandbox_ids[] = {
 {.compatible = "sandbox,test-processor"},
 {}
};

U_BOOT_DRIVER(sandbox_testproc) = {
 .name = "sandbox_test_proc",
 .of_match = sandbox_ids,
 .id = UCLASS_REMOTEPROC,
 .ops = &sandbox_testproc_ops,
 .probe = sandbox_testproc_probe,
};

This allows for the device to be probed as part of the “init” command
or invocation of ‘rproc_init()’ function as the system dependencies define.

The driver is expected to maintain it’s own statemachine which is
appropriate for the device it maintains. It must, at the very least
provide a load and start function. We assume here that the device
needs to be loaded and started, else, there is no real purpose of
using the remoteproc framework.

Describing the device using platform data

IMPORTANT NOTE: THIS SUPPORT IS NOT MEANT FOR USE WITH NEWER PLATFORM
SUPPORT. THIS IS ONLY FOR LEGACY DEVICES. THIS MODE OF INITIALIZATION
WILL BE EVENTUALLY REMOVED ONCE ALL NECESSARY PLATFORMS HAVE MOVED
TO DM/FDT.

Considering that many platforms are yet to move to device-tree model,
a simplified definition of a device is as follows:

struct dm_rproc_uclass_pdata proc_3_test = {
 .name = "proc_3_legacy",
 .mem_type = RPROC_INTERNAL_MEMORY_MAPPED,
 .driver_plat_data = &mydriver_data;
};

U_BOOT_DEVICE(proc_3_demo) = {
 .name = "sandbox_test_proc",
 .platdata = &proc_3_test,
};

There can be additional data that may be desired depending on the
remoteproc driver specific needs (for example: SoC integration
details such as clock handle or something similar). See appropriate
documentation for specific remoteproc driver for further details.
These are passed via driver_plat_data.

Describing the device using device tree

aliases usage is optional, but it is usually recommended to ensure the
users have a consistent usage model for a platform.
the compatible string used here is specific to the remoteproc driver involved.

How to port a serial driver to driver model

Almost all of the serial drivers have been converted as at January 2016. These
ones remain:

	serial_bfin.c

	serial_pxa.c

The deadline for this work was the end of January 2016. If no one steps
forward to convert these, at some point there may come a patch to remove them!

Here is a suggested approach for converting your serial driver over to driver
model. Please feel free to update this file with your ideas and suggestions.

	#ifdef out all your own serial driver code (#ifndef CONFIG_DM_SERIAL)

	Define CONFIG_DM_SERIAL for your board, vendor or architecture

	If the board does not already use driver model, you need CONFIG_DM also

	Your board should then build, but will not boot since there will be no serial
driver

	Add the U_BOOT_DRIVER piece at the end (e.g. copy serial_s5p.c for example)

	Add a private struct for the driver data - avoid using static variables

	Implement each of the driver methods, perhaps by calling your old methods

	You may need to adjust the function parameters so that the old and new
implementations can share most of the existing code

	If you convert all existing users of the driver, remove the pre-driver-model
code

In terms of patches a conversion series typically has these patches:
- clean up / prepare the driver for conversion
- add driver model code
- convert at least one existing board to use driver model serial
- (if no boards remain that don’t use driver model) remove the old code

This may be a good time to move your board to use device tree also. Mostly
this involves these steps:

	define CONFIG_OF_CONTROL and CONFIG_OF_SEPARATE

	add your device tree files to arch/<arch>/dts

	update the Makefile there

	Add stdout-path to your /chosen device tree node if it is not already there

	build and get u-boot-dtb.bin so you can test it

	Your drivers can now use device tree

	For device tree in SPL, define CONFIG_SPL_OF_CONTROL

How to port a SPI driver to driver model

Here is a rough step-by-step guide. It is based around converting the
exynos SPI driver to driver model (DM) and the example code is based
around U-Boot v2014.10-rc2 (commit be9f643). This has been updated for
v2015.04.

It is quite long since it includes actual code examples.

Before driver model, SPI drivers have their own private structure which
contains ‘struct spi_slave’. With driver model, ‘struct spi_slave’ still
exists, but now it is ‘per-child data’ for the SPI bus. Each child of the
SPI bus is a SPI slave. The information that was stored in the
driver-specific slave structure can now be port in private data for the
SPI bus.

For example, struct tegra_spi_slave looks like this:

struct tegra_spi_slave {
 struct spi_slave slave;
 struct tegra_spi_ctrl *ctrl;
};

In this case ‘slave’ will be in per-child data, and ‘ctrl’ will be in the
SPI’s buses private data.

How long does this take?

You should be able to complete this within 2 hours, including testing but
excluding preparing the patches. The API is basically the same as before
with only minor changes:

	methods to set speed and mode are separated out

	cs_info is used to get information on a chip select

Enable driver mode for SPI and SPI flash

Add these to your board config:

	CONFIG_DM_SPI

	CONFIG_DM_SPI_FLASH

Add the skeleton

Put this code at the bottom of your existing driver file:

struct spi_slave *spi_setup_slave(unsigned int busnum, unsigned int cs,
 unsigned int max_hz, unsigned int mode)
{
 return NULL;
}

struct spi_slave *spi_setup_slave_fdt(const void *blob, int slave_node,
 int spi_node)
{
 return NULL;
}

static int exynos_spi_ofdata_to_platdata(struct udevice *dev)
{
 return -ENODEV;
}

static int exynos_spi_probe(struct udevice *dev)
{
 return -ENODEV;
}

static int exynos_spi_remove(struct udevice *dev)
{
 return -ENODEV;
}

static int exynos_spi_claim_bus(struct udevice *dev)
{

 return -ENODEV;
}

static int exynos_spi_release_bus(struct udevice *dev)
{

 return -ENODEV;
}

static int exynos_spi_xfer(struct udevice *dev, unsigned int bitlen,
 const void *dout, void *din, unsigned long flags)
{

 return -ENODEV;
}

static int exynos_spi_set_speed(struct udevice *dev, uint speed)
{
 return -ENODEV;
}

static int exynos_spi_set_mode(struct udevice *dev, uint mode)
{
 return -ENODEV;
}

static int exynos_cs_info(struct udevice *bus, uint cs,
 struct spi_cs_info *info)
{
 return -EINVAL;
}

static const struct dm_spi_ops exynos_spi_ops = {
 .claim_bus = exynos_spi_claim_bus,
 .release_bus = exynos_spi_release_bus,
 .xfer = exynos_spi_xfer,
 .set_speed = exynos_spi_set_speed,
 .set_mode = exynos_spi_set_mode,
 .cs_info = exynos_cs_info,
};

static const struct udevice_id exynos_spi_ids[] = {
 { .compatible = "samsung,exynos-spi" },
 { }
};

U_BOOT_DRIVER(exynos_spi) = {
 .name = "exynos_spi",
 .id = UCLASS_SPI,
 .of_match = exynos_spi_ids,
 .ops = &exynos_spi_ops,
 .ofdata_to_platdata = exynos_spi_ofdata_to_platdata,
 .probe = exynos_spi_probe,
 .remove = exynos_spi_remove,
};

Replace ‘exynos’ in the above code with your driver name

#ifdef out all of the code in your driver except for the above

This will allow you to get it building, which means you can work
incrementally. Since all the methods return an error initially, there is
less chance that you will accidentally leave something in.

Also, even though your conversion is basically a rewrite, it might help
reviewers if you leave functions in the same place in the file,
particularly for large drivers.

Add some includes

Add these includes to your driver:

#include <dm.h>
#include <errno.h>

Build

At this point you should be able to build U-Boot for your board with the
empty SPI driver. You still have empty methods in your driver, but we will
write these one by one.

Set up your platform data structure

This will hold the information your driver to operate, like its hardware
address or maximum frequency.

You may already have a struct like this, or you may need to create one
from some of the #defines or global variables in the driver.

Note that this information is not the run-time information. It should not
include state that changes. It should be fixed throughout the live of
U-Boot. Run-time information comes later.

Here is what was in the exynos spi driver:

struct spi_bus {
 enum periph_id periph_id;
 s32 frequency; /* Default clock frequency, -1 for none */
 struct exynos_spi *regs;
 int inited; /* 1 if this bus is ready for use */
 int node;
 uint deactivate_delay_us; /* Delay to wait after deactivate */
};

Of these, inited is handled by DM and node is the device tree node, which
DM tells you. The name is not quite right. So in this case we would use:

struct exynos_spi_platdata {
 enum periph_id periph_id;
 s32 frequency; /* Default clock frequency, -1 for none */
 struct exynos_spi *regs;
 uint deactivate_delay_us; /* Delay to wait after deactivate */
};

Write ofdata_to_platdata() [for device tree only]

This method will convert information in the device tree node into a C
structure in your driver (called platform data). If you are not using
device tree, go to 8b.

DM will automatically allocate the struct for us when we are using device
tree, but we need to tell it the size:

U_BOOT_DRIVER(spi_exynos) = {
...
 .platdata_auto_alloc_size = sizeof(struct exynos_spi_platdata),

Here is a sample function. It gets a pointer to the platform data and
fills in the fields from device tree.

static int exynos_spi_ofdata_to_platdata(struct udevice *bus)
{
 struct exynos_spi_platdata *plat = bus->platdata;
 const void *blob = gd->fdt_blob;
 int node = dev_of_offset(bus);

 plat->regs = (struct exynos_spi *)fdtdec_get_addr(blob, node, "reg");
 plat->periph_id = pinmux_decode_periph_id(blob, node);

 if (plat->periph_id == PERIPH_ID_NONE) {
 debug("%s: Invalid peripheral ID %d\n", __func__,
 plat->periph_id);
 return -FDT_ERR_NOTFOUND;
 }

 /* Use 500KHz as a suitable default */
 plat->frequency = fdtdec_get_int(blob, node, "spi-max-frequency",
 500000);
 plat->deactivate_delay_us = fdtdec_get_int(blob, node,
 "spi-deactivate-delay", 0);
 debug("%s: regs=%p, periph_id=%d, max-frequency=%d, deactivate_delay=%d\n",
 __func__, plat->regs, plat->periph_id, plat->frequency,
 plat->deactivate_delay_us);

 return 0;
}

Add the platform data [non-device-tree only]

Specify this data in a U_BOOT_DEVICE() declaration in your board file:

struct exynos_spi_platdata platdata_spi0 = {
 .periph_id = ...
 .frequency = ...
 .regs = ...
 .deactivate_delay_us = ...
};

U_BOOT_DEVICE(board_spi0) = {
 .name = "exynos_spi",
 .platdata = &platdata_spi0,
};

You will unfortunately need to put the struct definition into a header file
in this case so that your board file can use it.

Add the device private data

Most devices have some private data which they use to keep track of things
while active. This is the run-time information and needs to be stored in
a structure. There is probably a structure in the driver that includes a
‘struct spi_slave’, so you can use that.

struct exynos_spi_slave {
 struct spi_slave slave;
 struct exynos_spi *regs;
 unsigned int freq; /* Default frequency */
 unsigned int mode;
 enum periph_id periph_id; /* Peripheral ID for this device */
 unsigned int fifo_size;
 int skip_preamble;
 struct spi_bus *bus; /* Pointer to our SPI bus info */
 ulong last_transaction_us; /* Time of last transaction end */
};

We should rename this to make its purpose more obvious, and get rid of
the slave structure, so we have:

struct exynos_spi_priv {
 struct exynos_spi *regs;
 unsigned int freq; /* Default frequency */
 unsigned int mode;
 enum periph_id periph_id; /* Peripheral ID for this device */
 unsigned int fifo_size;
 int skip_preamble;
 ulong last_transaction_us; /* Time of last transaction end */
};

DM can auto-allocate this also:

U_BOOT_DRIVER(spi_exynos) = {
...
 .priv_auto_alloc_size = sizeof(struct exynos_spi_priv),

Note that this is created before the probe method is called, and destroyed
after the remove method is called. It will be zeroed when the probe
method is called.

Add the probe() and remove() methods

Note: It’s a good idea to build repeatedly as you are working, to avoid a
huge amount of work getting things compiling at the end.

The probe method is supposed to set up the hardware. U-Boot used to use
spi_setup_slave() to do this. So take a look at this function and see
what you can copy out to set things up.

static int exynos_spi_probe(struct udevice *bus)
{
 struct exynos_spi_platdata *plat = dev_get_platdata(bus);
 struct exynos_spi_priv *priv = dev_get_priv(bus);

 priv->regs = plat->regs;
 if (plat->periph_id == PERIPH_ID_SPI1 ||
 plat->periph_id == PERIPH_ID_SPI2)
 priv->fifo_size = 64;
 else
 priv->fifo_size = 256;

 priv->skip_preamble = 0;
 priv->last_transaction_us = timer_get_us();
 priv->freq = plat->frequency;
 priv->periph_id = plat->periph_id;

 return 0;
}

This implementation doesn’t actually touch the hardware, which is somewhat
unusual for a driver. In this case we will do that when the device is
claimed by something that wants to use the SPI bus.

For remove we could shut down the clocks, but in this case there is
nothing to do. DM frees any memory that it allocated, so we can just
remove exynos_spi_remove() and its reference in U_BOOT_DRIVER.

Implement set_speed()

This should set up clocks so that the SPI bus is running at the right
speed. With the old API spi_claim_bus() would normally do this and several
of the following functions, so let’s look at that function:

int spi_claim_bus(struct spi_slave *slave)
{
 struct exynos_spi_slave *spi_slave = to_exynos_spi(slave);
 struct exynos_spi *regs = spi_slave->regs;
 u32 reg = 0;
 int ret;

 ret = set_spi_clk(spi_slave->periph_id,
 spi_slave->freq);
 if (ret < 0) {
 debug("%s: Failed to setup spi clock\n", __func__);
 return ret;
 }

 exynos_pinmux_config(spi_slave->periph_id, PINMUX_FLAG_NONE);

 spi_flush_fifo(slave);

 reg = readl(®s->ch_cfg);
 reg &= ~(SPI_CH_CPHA_B | SPI_CH_CPOL_L);

 if (spi_slave->mode & SPI_CPHA)
 reg |= SPI_CH_CPHA_B;

 if (spi_slave->mode & SPI_CPOL)
 reg |= SPI_CH_CPOL_L;

 writel(reg, ®s->ch_cfg);
 writel(SPI_FB_DELAY_180, ®s->fb_clk);

 return 0;
}

It sets up the speed, mode, pinmux, feedback delay and clears the FIFOs.
With DM these will happen in separate methods.

Here is an example for the speed part:

static int exynos_spi_set_speed(struct udevice *bus, uint speed)
{
 struct exynos_spi_platdata *plat = bus->platdata;
 struct exynos_spi_priv *priv = dev_get_priv(bus);
 int ret;

 if (speed > plat->frequency)
 speed = plat->frequency;
 ret = set_spi_clk(priv->periph_id, speed);
 if (ret)
 return ret;
 priv->freq = speed;
 debug("%s: regs=%p, speed=%d\n", __func__, priv->regs, priv->freq);

 return 0;
}

Implement set_mode()

This should adjust the SPI mode (polarity, etc.). Again this code probably
comes from the old spi_claim_bus(). Here is an example:

static int exynos_spi_set_mode(struct udevice *bus, uint mode)
{
 struct exynos_spi_priv *priv = dev_get_priv(bus);
 uint32_t reg;

 reg = readl(&priv->regs->ch_cfg);
 reg &= ~(SPI_CH_CPHA_B | SPI_CH_CPOL_L);

 if (mode & SPI_CPHA)
 reg |= SPI_CH_CPHA_B;

 if (mode & SPI_CPOL)
 reg |= SPI_CH_CPOL_L;

 writel(reg, &priv->regs->ch_cfg);
 priv->mode = mode;
 debug("%s: regs=%p, mode=%d\n", __func__, priv->regs, priv->mode);

 return 0;
}

Implement claim_bus()

This is where a client wants to make use of the bus, so claims it first.
At this point we need to make sure everything is set up ready for data
transfer. Note that this function is wholly internal to the driver - at
present the SPI uclass never calls it.

Here again we look at the old claim function and see some code that is
needed. It is anything unrelated to speed and mode:

static int exynos_spi_claim_bus(struct udevice *bus)
{
 struct exynos_spi_priv *priv = dev_get_priv(bus);

 exynos_pinmux_config(priv->periph_id, PINMUX_FLAG_NONE);
 spi_flush_fifo(priv->regs);

 writel(SPI_FB_DELAY_180, &priv->regs->fb_clk);

 return 0;
}

The spi_flush_fifo() function is in the removed part of the code, so we
need to expose it again (perhaps with an #endif before it and ‘#if 0’
after it). It only needs access to priv->regs which is why we have
passed that in:

/**
 * Flush spi tx, rx fifos and reset the SPI controller
 *
 * @param regs Pointer to SPI registers
 */
static void spi_flush_fifo(struct exynos_spi *regs)
{
 clrsetbits_le32(®s->ch_cfg, SPI_CH_HS_EN, SPI_CH_RST);
 clrbits_le32(®s->ch_cfg, SPI_CH_RST);
 setbits_le32(®s->ch_cfg, SPI_TX_CH_ON | SPI_RX_CH_ON);
}

Implement release_bus()

This releases the bus - in our example the old code in spi_release_bus()
is a call to spi_flush_fifo, so we add:

static int exynos_spi_release_bus(struct udevice *bus)
{
 struct exynos_spi_priv *priv = dev_get_priv(bus);

 spi_flush_fifo(priv->regs);

 return 0;
}

Implement xfer()

This is the final method that we need to create, and it is where all the
work happens. The method parameters are the same as the old spi_xfer() with
the addition of a ‘struct udevice’ so conversion is pretty easy. Start
by copying the contents of spi_xfer() to your new xfer() method and proceed
from there.

If (flags & SPI_XFER_BEGIN) is non-zero then xfer() normally calls an
activate function, something like this:

void spi_cs_activate(struct spi_slave *slave)
{
 struct exynos_spi_slave *spi_slave = to_exynos_spi(slave);

 /* If it's too soon to do another transaction, wait */
 if (spi_slave->bus->deactivate_delay_us &&
 spi_slave->last_transaction_us) {
 ulong delay_us; /* The delay completed so far */
 delay_us = timer_get_us() - spi_slave->last_transaction_us;
 if (delay_us < spi_slave->bus->deactivate_delay_us)
 udelay(spi_slave->bus->deactivate_delay_us - delay_us);
 }

 clrbits_le32(&spi_slave->regs->cs_reg, SPI_SLAVE_SIG_INACT);
 debug("Activate CS, bus %d\n", spi_slave->slave.bus);
 spi_slave->skip_preamble = spi_slave->mode & SPI_PREAMBLE;
}

The new version looks like this:

static void spi_cs_activate(struct udevice *dev)
{
 struct udevice *bus = dev->parent;
 struct exynos_spi_platdata *pdata = dev_get_platdata(bus);
 struct exynos_spi_priv *priv = dev_get_priv(bus);

 /* If it's too soon to do another transaction, wait */
 if (pdata->deactivate_delay_us &&
 priv->last_transaction_us) {
 ulong delay_us; /* The delay completed so far */
 delay_us = timer_get_us() - priv->last_transaction_us;
 if (delay_us < pdata->deactivate_delay_us)
 udelay(pdata->deactivate_delay_us - delay_us);
 }

 clrbits_le32(&priv->regs->cs_reg, SPI_SLAVE_SIG_INACT);
 debug("Activate CS, bus '%s'\n", bus->name);
 priv->skip_preamble = priv->mode & SPI_PREAMBLE;
}

All we have really done here is change the pointers and print the device name
instead of the bus number. Other local static functions can be treated in
the same way.

Set up the per-child data and child pre-probe function

To minimise the pain and complexity of the SPI subsystem while the driver
model change-over is in place, struct spi_slave is used to reference a
SPI bus slave, even though that slave is actually a struct udevice. In fact
struct spi_slave is the device’s child data. We need to make sure this space
is available. It is possible to allocate more space that struct spi_slave
needs, but this is the minimum.

U_BOOT_DRIVER(exynos_spi) = {
...
 .per_child_auto_alloc_size = sizeof(struct spi_slave),
}

Optional: Set up cs_info() if you want it

Sometimes it is useful to know whether a SPI chip select is valid, but this
is not obvious from outside the driver. In this case you can provide a
method for cs_info() to deal with this. If you don’t provide it, then the
device tree will be used to determine what chip selects are valid.

Return -EINVAL if the supplied chip select is invalid, or 0 if it is valid.
If you don’t provide the cs_info() method, 0 is assumed for all chip selects
that do not appear in the device tree.

Test it

Now that you have the code written and it compiles, try testing it using
the ‘sf test’ command. You may need to enable CONFIG_CMD_SF_TEST for your
board.

Prepare patches and send them to the mailing lists

You can use ‘tools/patman/patman’ to prepare, check and send patches for
your work. See tools/patman/README for details.

A little note about SPI uclass features

The SPI uclass keeps some information about each device ‘dev’ on the bus:

	struct dm_spi_slave_platdata:

	This is device_get_parent_platdata(dev).
This is where the chip select number is stored, along with
the default bus speed and mode. It is automatically read
from the device tree in spi_child_post_bind(). It must not
be changed at run-time after being set up because platform
data is supposed to be immutable at run-time.

	struct spi_slave:

	This is device_get_parentdata(dev).
Already mentioned above. It holds run-time information about
the device.

There are also some SPI uclass methods that get called behind the scenes:

	spi_post_bind():

	Called when a new bus is bound.
This scans the device tree for devices on the bus, and binds
each one. This in turn causes spi_child_post_bind() to be
called for each, which reads the device tree information
into the parent (per-child) platform data.

	spi_child_post_bind():

	Called when a new child is bound.
As mentioned above this reads the device tree information
into the per-child platform data

	spi_child_pre_probe():

	Called before a new child is probed.
This sets up the mode and speed in struct spi_slave by
copying it from the parent’s platform data for this child.
It also sets the ‘dev’ pointer, needed to permit passing
‘struct spi_slave’ around the place without needing a
separate ‘struct udevice’ pointer.

The above housekeeping makes it easier to write your SPI driver.

How USB works with driver model

Introduction

Driver model USB support makes use of existing features but changes how
drivers are found. This document provides some information intended to help
understand how things work with USB in U-Boot when driver model is enabled.

Enabling driver model for USB

A new CONFIG_DM_USB option is provided to enable driver model for USB. This
causes the USB uclass to be included, and drops the equivalent code in
usb.c. In particular the usb_init() function is then implemented by the
uclass.

Support for EHCI and XHCI

So far OHCI is not supported. Both EHCI and XHCI drivers should be declared
as drivers in the USB uclass. For example:

static const struct udevice_id ehci_usb_ids[] = {
 { .compatible = "nvidia,tegra20-ehci", .data = USB_CTLR_T20 },
 { .compatible = "nvidia,tegra30-ehci", .data = USB_CTLR_T30 },
 { .compatible = "nvidia,tegra114-ehci", .data = USB_CTLR_T114 },
 { }
};

U_BOOT_DRIVER(usb_ehci) = {
 .name = "ehci_tegra",
 .id = UCLASS_USB,
 .of_match = ehci_usb_ids,
 .ofdata_to_platdata = ehci_usb_ofdata_to_platdata,
 .probe = tegra_ehci_usb_probe,
 .remove = tegra_ehci_usb_remove,
 .ops = &ehci_usb_ops,
 .platdata_auto_alloc_size = sizeof(struct usb_platdata),
 .priv_auto_alloc_size = sizeof(struct fdt_usb),
 .flags = DM_FLAG_ALLOC_PRIV_DMA,
};

Here ehci_usb_ids is used to list the controllers that the driver supports.
Each has its own data value. Controllers must be in the UCLASS_USB uclass.

The ofdata_to_platdata() method allows the controller driver to grab any
necessary settings from the device tree.

The ops here are ehci_usb_ops. All EHCI drivers will use these same ops in
most cases, since they are all EHCI-compatible. For EHCI there are also some
special operations that can be overridden when calling ehci_register().

The driver can use priv_auto_alloc_size to set the size of its private data.
This can hold run-time information needed by the driver for operation. It
exists when the device is probed (not when it is bound) and is removed when
the driver is removed.

Note that usb_platdata is currently only used to deal with setting up a bus
in USB device mode (OTG operation). It can be omitted if that is not
supported.

The driver’s probe() method should do the basic controller init and then
call ehci_register() to register itself as an EHCI device. It should call
ehci_deregister() in the remove() method. Registering a new EHCI device
does not by itself cause the bus to be scanned.

The old ehci_hcd_init() function is no-longer used. Nor is it necessary to
set up the USB controllers from board init code. When ‘usb start’ is used,
each controller will be probed and its bus scanned.

XHCI works in a similar way.

Data structures

The following primary data structures are in use:

	
	struct usb_device:

	This holds information about a device on the bus. All devices have
this structure, even the root hub. The controller itself does not
have this structure. You can access it for a device ‘dev’ with
dev_get_parent_priv(dev). It matches the old structure except that the
parent and child information is not present (since driver model
handles that). Once the device is set up, you can find the device
descriptor and current configuration descriptor in this structure.

	
	struct usb_platdata:

	This holds platform data for a controller. So far this is only used
as a work-around for controllers which can act as USB devices in OTG
mode, since the gadget framework does not use driver model.

	
	struct usb_dev_platdata:

	This holds platform data for a device. You can access it for a
device ‘dev’ with dev_get_parent_platdata(dev). It holds the device
address and speed - anything that can be determined before the device
driver is actually set up. When probing the bus this structure is
used to provide essential information to the device driver.

	
	struct usb_bus_priv:

	This is private information for each controller, maintained by the
controller uclass. It is mostly used to keep track of the next
device address to use.

Of these, only struct usb_device was used prior to driver model.

USB buses

Given a controller, you know the bus - it is the one attached to the
controller. Each controller handles exactly one bus. Every controller has a
root hub attached to it. This hub, which is itself a USB device, can provide
one or more ‘ports’ to which additional devices can be attached. It is
possible to power up a hub and find out which of its ports have devices
attached.

Devices are given addresses starting at 1. The root hub is always address 1,
and from there the devices are numbered in sequence. The USB uclass takes
care of this numbering automatically during enumeration.

USB devices are enumerated by finding a device on a particular hub, and
setting its address to the next available address. The USB bus stretches out
in a tree structure, potentially with multiple hubs each with several ports
and perhaps other hubs. Some hubs will have their own power since otherwise
the 5V 500mA power supplied by the controller will not be sufficient to run
very many devices.

Enumeration in U-Boot takes a long time since devices are probed one at a
time, and each is given sufficient time to wake up and announce itself. The
timeouts are set for the slowest device.

Up to 127 devices can be on each bus. USB has four bus speeds: low
(1.5Mbps), full (12Mbps), high (480Mbps) which is only available with USB2
and newer (EHCI), and super (5Gbps) which is only available with USB3 and
newer (XHCI). If you connect a super-speed device to a high-speed hub, you
will only get high-speed.

USB operations

As before driver model, messages can be sent using submit_bulk_msg() and the
like. These are now implemented by the USB uclass and route through the
controller drivers. Note that messages are not sent to the driver of the
device itself - i.e. they don’t pass down the stack to the controller.
U-Boot simply finds the controller to which the device is attached, and sends
the message there with an appropriate ‘pipe’ value so it can be addressed
properly. Having said that, the USB device which should receive the message
is passed in to the driver methods, for use by sandbox. This design decision
is open for review and the code impact of changing it is small since the
methods are typically implemented by the EHCI and XHCI stacks.

Controller drivers (in UCLASS_USB) themselves provide methods for sending
each message type. For XHCI an additional alloc_device() method is provided
since XHCI needs to allocate a device context before it can even read the
device’s descriptor.

These methods use a ‘pipe’ which is a collection of bit fields used to
describe the type of message, direction of transfer and the intended
recipient (device number).

USB Devices

USB devices are found using a simple algorithm which works through the
available hubs in a depth-first search. Devices can be in any uclass, but
are attached to a parent hub (or controller in the case of the root hub) and
so have parent data attached to them (this is struct usb_device).

By the time the device’s probe() method is called, it is enumerated and is
ready to talk to the host.

The enumeration process needs to work out which driver to attach to each USB
device. It does this by examining the device class, interface class, vendor
ID, product ID, etc. See struct usb_driver_entry for how drivers are matched
with USB devices - you can use the USB_DEVICE() macro to declare a USB
driver. For example, usb_storage.c defines a USB_DEVICE() to handle storage
devices, and it will be used for all USB devices which match.

Technical details on enumeration flow

It is useful to understand precisely how a USB bus is enumerating to avoid
confusion when dealing with USB devices.

Device initialisation happens roughly like this:

	At some point the ‘usb start’ command is run

	This calls usb_init() which works through each controller in turn

	The controller is probed(). This does no enumeration.

	Then usb_scan_bus() is called. This calls usb_scan_device() to scan the
(only) device that is attached to the controller - a root hub

	usb_scan_device() sets up a fake struct usb_device and calls
usb_setup_device(), passing the port number to be scanned, in this case
port 0

	usb_setup_device() first calls usb_prepare_device() to set the device
address, then usb_select_config() to select the first configuration

	at this point the device is enumerated but we do not have a real struct
udevice for it. But we do have the descriptor in struct usb_device so we can
use this to figure out what driver to use

	back in usb_scan_device(), we call usb_find_child() to try to find an
existing device which matches the one we just found on the bus. This can
happen if the device is mentioned in the device tree, or if we previously
scanned the bus and so the device was created before

	if usb_find_child() does not find an existing device, we call
usb_find_and_bind_driver() which tries to bind one

	usb_find_and_bind_driver() searches all available USB drivers (declared
with USB_DEVICE()). If it finds a match it binds that driver to create a
new device.

	If it does not, it binds a generic driver. A generic driver is good enough
to allow access to the device (sending it packets, etc.) but all
functionality will need to be implemented outside the driver model.

	in any case, when usb_find_child() and/or usb_find_and_bind_driver() are
done, we have a device with the correct uclass. At this point we want to
probe the device

	first we store basic information about the new device (address, port,
speed) in its parent platform data. We cannot store it its private data
since that will not exist until the device is probed.

	then we call device_probe() which probes the device

	the first probe step is actually the USB controller’s (or USB hubs’s)
child_pre_probe() method. This gets called before anything else and is
intended to set up a child device ready to be used with its parent bus. For
USB this calls usb_child_pre_probe() which grabs the information that was
stored in the parent platform data and stores it in the parent private data
(which is struct usb_device, a real one this time). It then calls
usb_select_config() again to make sure that everything about the device is
set up

	note that we have called usb_select_config() twice. This is inefficient
but the alternative is to store additional information in the platform data.
The time taken is minimal and this way is simpler

	at this point the device is set up and ready for use so far as the USB
subsystem is concerned

	the device’s probe() method is then called. It can send messages and do
whatever else it wants to make the device work.

Note that the first device is always a root hub, and this must be scanned to
find any devices. The above steps will have created a hub (UCLASS_USB_HUB),
given it address 1 and set the configuration.

For hubs, the hub uclass has a post_probe() method. This means that after
any hub is probed, the uclass gets to do some processing. In this case
usb_hub_post_probe() is called, and the following steps take place:

	usb_hub_post_probe() calls usb_hub_scan() to scan the hub, which in turn
calls usb_hub_configure()

	hub power is enabled

	we loop through each port on the hub, performing the same steps for each

	first, check if there is a device present. This happens in
usb_hub_port_connect_change(). If so, then usb_scan_device() is called to
scan the device, passing the appropriate port number.

	you will recognise usb_scan_device() from the steps above. It sets up the
device ready for use. If it is a hub, it will scan that hub before it
continues here (recursively, depth-first)

	once all hub ports are scanned in this way, the hub is ready for use and
all of its downstream devices also

	additional controllers are scanned in the same way

The above method has some nice properties:

	the bus enumeration happens by virtue of driver model’s natural device flow

	most logic is in the USB controller and hub uclasses; the actual device
drivers do not need to know they are on a USB bus, at least so far as
enumeration goes

	hub scanning happens automatically after a hub is probed

Hubs

USB hubs are scanned as in the section above. While hubs have their own
uclass, they share some common elements with controllers:

	they both attach private data to their children (struct usb_device,
accessible for a child with dev_get_parent_priv(child))

	they both use usb_child_pre_probe() to set up their children as proper USB
devices

Example - Mass Storage

As an example of a USB device driver, see usb_storage.c. It uses its own
uclass and declares itself as follows:

U_BOOT_DRIVER(usb_mass_storage) = {
 .name = "usb_mass_storage",
 .id = UCLASS_MASS_STORAGE,
 .of_match = usb_mass_storage_ids,
 .probe = usb_mass_storage_probe,
};

static const struct usb_device_id mass_storage_id_table[] = {
 { .match_flags = USB_DEVICE_ID_MATCH_INT_CLASS,
 .bInterfaceClass = USB_CLASS_MASS_STORAGE},
 { } /* Terminating entry */
};

USB_DEVICE(usb_mass_storage, mass_storage_id_table);

The USB_DEVICE() macro attaches the given table of matching information to
the given driver. Note that the driver is declared in U_BOOT_DRIVER() as
‘usb_mass_storage’ and this must match the first parameter of USB_DEVICE.

When usb_find_and_bind_driver() is called on a USB device with the
bInterfaceClass value of USB_CLASS_MASS_STORAGE, it will automatically find
this driver and use it.

Counter-example: USB Ethernet

As an example of the old way of doing things, see usb_ether.c. When the bus
is scanned, all Ethernet devices will be created as generic USB devices (in
uclass UCLASS_USB_DEV_GENERIC). Then, when the scan is completed,
usb_host_eth_scan() will be called. This looks through all the devices on
each bus and manually figures out which are Ethernet devices in the ways of
yore.

In fact, usb_ether should be moved to driver model. Each USB Ethernet driver
(e.g drivers/usb/eth/asix.c) should include a USB_DEVICE() declaration, so
that it will be found as part of normal USB enumeration. Then, instead of a
generic USB driver, a real (driver-model-aware) driver will be used. Since
Ethernet now supports driver model, this should be fairly easy to achieve,
and then usb_ether.c and the usb_host_eth_scan() will melt away.

Sandbox

All driver model uclasses must have tests and USB is no exception. To
achieve this, a sandbox USB controller is provided. This can make use of
emulation drivers which pretend to be USB devices. Emulations are provided
for a hub and a flash stick. These are enough to create a pretend USB bus
(defined by the sandbox device tree sandbox.dts) which can be scanned and
used.

Tests in test/dm/usb.c make use of this feature. It allows much of the USB
stack to be tested without real hardware being needed.

Here is an example device tree fragment:

usb@1 {
 compatible = "sandbox,usb";
 hub {
 compatible = "usb-hub";
 usb,device-class = <USB_CLASS_HUB>;
 hub-emul {
 compatible = "sandbox,usb-hub";
 #address-cells = <1>;
 #size-cells = <0>;
 flash-stick {
 reg = <0>;
 compatible = "sandbox,usb-flash";
 sandbox,filepath = "flash.bin";
 };
 };
 };
};

This defines a single controller, containing a root hub (which is required).
The hub is emulated by a hub emulator, and the emulated hub has a single
flash stick to emulate on one of its ports.

When ‘usb start’ is used, the following ‘dm tree’ output will be available:

usb [+] `-- usb@1
usb_hub [+] `-- hub
usb_emul [+] |-- hub-emul
usb_emul [+] | `-- flash-stick
usb_mass_st [+] `-- usb_mass_storage

This may look confusing. Most of it mirrors the device tree, but the
‘usb_mass_storage’ device is not in the device tree. This is created by
usb_find_and_bind_driver() based on the USB_DRIVER in usb_storage.c. While
‘flash-stick’ is the emulation device, ‘usb_mass_storage’ is the real U-Boot
USB device driver that talks to it.

Future work

It is pretty uncommon to have a large USB bus with lots of hubs on an
embedded system. In fact anything other than a root hub is uncommon. Still
it would be possible to speed up enumeration in two ways:

	breadth-first search would allow devices to be reset and probed in
parallel to some extent

	enumeration could be lazy, in the sense that we could enumerate just the
root hub at first, then only progress to the next ‘level’ when a device is
used that we cannot find. This could be made easier if the devices were
statically declared in the device tree (which is acceptable for production
boards where the same, known, things are on each bus).

But in common cases the current algorithm is sufficient.

Other things that need doing:
- Convert usb_ether to use driver model as described above
- Test that keyboards work (and convert to driver model)
- Move the USB gadget framework to driver model
- Implement OHCI in driver model
- Implement USB PHYs in driver model
- Work out a clever way to provide lazy init for USB devices

U-Boot API documentation

	UEFI subsystem
	Lauching UEFI images

	Initialization of the UEFI sub-system

	Boot services

	Runtime services

	UEFI drivers

	Protocols

	Linker-Generated Arrays

	Serial system

UEFI subsystem

Lauching UEFI images

Bootefi command

The bootefi command is used to start UEFI applications or to install UEFI
drivers. It takes two parameters

bootefi <image address> [fdt address]

	image address - the memory address of the UEFI binary

	fdt address - the memory address of the flattened device tree

The environment variable ‘bootargs’ is passed as load options in the UEFI system
table. The Linux kernel EFI stub uses the load options as command line
arguments.

	
efi_status_t set_load_options(efi_handle_t handle, const char * env_var, u16 ** load_options)

	

Parameters

	efi_handle_t handle

	the image handle

	const char * env_var

	name of the environment variable

	u16 ** load_options

	pointer to load options (output)

Return

status code

	
efi_status_t copy_fdt(void ** fdtp)

	Copy the device tree to a new location available to EFI

Parameters

	void ** fdtp

	On entry a pointer to the flattened device tree.
On exit a pointer to the copy of the flattened device tree.
FDT start

Description

The FDT is copied to a suitable location within the EFI memory map.
Additional 12 KiB are added to the space in case the device tree needs to be
expanded later with fdt_open_into().

Return

status code

	
void efi_carve_out_dt_rsv(void * fdt)

	Carve out DT reserved memory ranges

Parameters

	void * fdt

	Pointer to device tree

Description

The mem_rsv entries of the FDT are added to the memory map. Any failures are
ignored because this is not critical and we would rather continue to try to
boot.

	
void * get_config_table(const efi_guid_t * guid)

	get configuration table

Parameters

	const efi_guid_t * guid

	GUID of the configuration table

Return

pointer to configuration table or NULL

	
efi_status_t efi_install_fdt(void * fdt)

	install device tree

Parameters

	void * fdt

	address of device tree or EFI_FDT_USE_INTERNAL to use the
the hardware device tree as indicated by environment variable
fdt_addr or as fallback the internal device tree as indicated by
the environment variable fdtcontroladdr

Description

If fdt is not EFI_FDT_USE_INTERNAL, the device tree located at that memory
address will will be installed as configuration table, otherwise the device
tree located at the address indicated by environment variable fdt_addr or as
fallback fdtcontroladdr will be used.

On architectures using ACPI tables device trees shall not be installed as
configuration table.

Return

status code

	
efi_status_t do_bootefi_exec(efi_handle_t handle)

	execute EFI binary

Parameters

	efi_handle_t handle

	handle of loaded image

Return

status code

Load the EFI binary into a newly assigned memory unwinding the relocation
information, install the loaded image protocol, and call the binary.

	
int do_efibootmgr(void)

	execute EFI boot manager

Parameters

	void

	no arguments

Return

status code

	
int do_bootefi_image(const char * image_opt)

	execute EFI binary

Parameters

	const char * image_opt

	string of image start address

Description

Set up memory image for the binary to be loaded, prepare device path, and
then call do_bootefi_exec() to execute it.

Return

status code

	
efi_status_t efi_run_image(void * source_buffer, efi_uintn_t source_size)

	run loaded UEFI image

Parameters

	void * source_buffer

	memory address of the UEFI image

	efi_uintn_t source_size

	size of the UEFI image

Return

status code

	
efi_status_t bootefi_test_prepare(struct efi_loaded_image_obj ** image_objp, struct efi_loaded_image ** loaded_image_infop, const char * path, const char * load_options_path)

	prepare to run an EFI test

Parameters

	struct efi_loaded_image_obj ** image_objp

	pointer to be set to the loaded image handle

	struct efi_loaded_image ** loaded_image_infop

	pointer to be set to the loaded image protocol

	const char * path

	dummy file path used to construct the device path
set in the loaded image protocol

	const char * load_options_path

	name of a U-Boot environment variable. Its value is
set as load options in the loaded image protocol.

Description

Prepare to run a test as if it were provided by a loaded image.

Return

status code

	
void bootefi_run_finish(struct efi_loaded_image_obj * image_obj, struct efi_loaded_image * loaded_image_info)

	finish up after running an EFI test

Parameters

	struct efi_loaded_image_obj * image_obj

	Pointer to a struct which holds the loaded image object

	struct efi_loaded_image * loaded_image_info

	Pointer to a struct which holds the loaded image info

	
int do_efi_selftest(void)

	execute EFI selftest

Parameters

	void

	no arguments

Return

status code

	
int do_bootefi(cmd_tbl_t * cmdtp, int flag, int argc, char *const argv)

	execute bootefi command

Parameters

	cmd_tbl_t * cmdtp

	table entry describing command

	int flag

	bitmap indicating how the command was invoked

	int argc

	number of arguments

	char *const argv

	command line arguments

Return

status code

	
void efi_set_bootdev(const char * dev, const char * devnr, const char * path)

	set boot device

Parameters

	const char * dev

	device, e.g. “MMC”

	const char * devnr

	number of the device, e.g. “1:2”

	const char * path

	path to file loaded

Description

This function is called when a file is loaded, e.g. via the ‘load’ command.
We use the path to this file to inform the UEFI binary about the boot device.

Boot manager

The UEFI specification foresees to define boot entries and boot sequence via UEFI
variables. Booting according to these variables is possible via

bootefi bootmgr [fdt address]

	fdt address - the memory address of the flattened device tree

The relevant variables are:

	Boot0000-BootFFFF define boot entries

	BootNext specifies next boot option to be booted

	BootOrder specifies in which sequence the boot options shall be tried if
BootNext is not defined or booting via BootNext fails

	
void efi_deserialize_load_option(struct efi_load_option * lo, u8 * data)

	parse serialized data

Parameters

	struct efi_load_option * lo

	pointer to target

	u8 * data

	serialized data

Description

Parse serialized data describing a load option and transform it to the
efi_load_option structure.

	
unsigned long efi_serialize_load_option(struct efi_load_option * lo, u8 ** data)

	serialize load option

Parameters

	struct efi_load_option * lo

	load option

	u8 ** data

	buffer for serialized data

Description

Serialize efi_load_option structure into byte stream for BootXXXX.

Return

size of allocated buffer

	
void * get_var(u16 * name, const efi_guid_t * vendor, efi_uintn_t * size)

	get UEFI variable

Parameters

	u16 * name

	name of variable

	const efi_guid_t * vendor

	vendor GUID of variable

	efi_uintn_t * size

	size of allocated buffer

Description

It is the caller’s duty to free the returned buffer.

Return

buffer with variable data or NULL

	
efi_status_t try_load_entry(u16 n, efi_handle_t * handle)

	try to load image for boot option

Parameters

	u16 n

	number of the boot option, e.g. 0x0a13 for Boot0A13

	efi_handle_t * handle

	on return handle for the newly installed image

Description

Attempt to load load-option number ‘n’, returning device_path and file_path
if successful. This checks that the EFI_LOAD_OPTION is active (enabled)
and that the specified file to boot exists.

Return

status code

	
efi_status_t efi_bootmgr_load(efi_handle_t * handle)

	try to load from BootNext or BootOrder

Parameters

	efi_handle_t * handle

	on return handle for the newly installed image

Description

Attempt to load from BootNext or in the order specified by BootOrder
EFI variable, the available load-options, finding and returning
the first one that can be loaded successfully.

Return

status code

Efidebug command

The efidebug command is used to set and display boot options as well as to
display information about internal data of the UEFI subsystem (devices,
drivers, handles, loaded images, and the memory map).

	
int efi_get_device_handle_info(efi_handle_t handle, u16 ** dev_path_text)

	get information of UEFI device

Parameters

	efi_handle_t handle

	Handle of UEFI device

	u16 ** dev_path_text

	Pointer to text of device path

Return

0 on success, -1 on failure

Currently return a formatted text of device path.

	
int do_efi_show_devices(cmd_tbl_t * cmdtp, int flag, int argc, char *const argv)

	show UEFI devices

Parameters

	cmd_tbl_t * cmdtp

	Command table

	int flag

	Command flag

	int argc

	Number of arguments

	char *const argv

	Argument array

Return

CMD_RET_SUCCESS on success, CMD_RET_RET_FAILURE on failure

Implement efidebug “devices” sub-command.
Show all UEFI devices and their information.

	
int efi_get_driver_handle_info(efi_handle_t handle, u16 ** driver_name, u16 ** image_path)

	get information of UEFI driver

Parameters

	efi_handle_t handle

	Handle of UEFI device

	u16 ** driver_name

	Driver name

	u16 ** image_path

	Pointer to text of device path

Return

0 on success, -1 on failure

Currently return no useful information as all UEFI drivers are
built-in..

	
int do_efi_show_drivers(cmd_tbl_t * cmdtp, int flag, int argc, char *const argv)

	show UEFI drivers

Parameters

	cmd_tbl_t * cmdtp

	Command table

	int flag

	Command flag

	int argc

	Number of arguments

	char *const argv

	Argument array

Return

CMD_RET_SUCCESS on success, CMD_RET_RET_FAILURE on failure

Implement efidebug “drivers” sub-command.
Show all UEFI drivers and their information.

	
const char * get_guid_text(const void * guid)

	get string of GUID

Parameters

	const void * guid

	GUID

Description

Return description of GUID.

Return

description of GUID or NULL

	
int do_efi_show_handles(cmd_tbl_t * cmdtp, int flag, int argc, char *const argv)

	show UEFI handles

Parameters

	cmd_tbl_t * cmdtp

	Command table

	int flag

	Command flag

	int argc

	Number of arguments

	char *const argv

	Argument array

Return

CMD_RET_SUCCESS on success, CMD_RET_RET_FAILURE on failure

Implement efidebug “dh” sub-command.
Show all UEFI handles and their information, currently all protocols
added to handle.

	
int do_efi_show_images(cmd_tbl_t * cmdtp, int flag, int argc, char *const argv)

	show UEFI images

Parameters

	cmd_tbl_t * cmdtp

	Command table

	int flag

	Command flag

	int argc

	Number of arguments

	char *const argv

	Argument array

Return

CMD_RET_SUCCESS on success, CMD_RET_RET_FAILURE on failure

Implement efidebug “images” sub-command.
Show all UEFI loaded images and their information.

	
void print_memory_attributes(u64 attributes)

	print memory map attributes

Parameters

	u64 attributes

	Attribute value

Description

Print memory map attributes

	
int do_efi_show_memmap(cmd_tbl_t * cmdtp, int flag, int argc, char *const argv)

	show UEFI memory map

Parameters

	cmd_tbl_t * cmdtp

	Command table

	int flag

	Command flag

	int argc

	Number of arguments

	char *const argv

	Argument array

Return

CMD_RET_SUCCESS on success, CMD_RET_RET_FAILURE on failure

Implement efidebug “memmap” sub-command.
Show UEFI memory map.

	
int do_efi_show_tables(cmd_tbl_t * cmdtp, int flag, int argc, char *const argv)

	show UEFI configuration tables

Parameters

	cmd_tbl_t * cmdtp

	Command table

	int flag

	Command flag

	int argc

	Number of arguments

	char *const argv

	Argument array

Return

CMD_RET_SUCCESS on success, CMD_RET_RET_FAILURE on failure

Implement efidebug “tables” sub-command.
Show UEFI configuration tables.

	
int do_efi_boot_add(cmd_tbl_t * cmdtp, int flag, int argc, char *const argv)

	set UEFI load option

Parameters

	cmd_tbl_t * cmdtp

	Command table

	int flag

	Command flag

	int argc

	Number of arguments

	char *const argv

	Argument array

Return

	CMD_RET_SUCCESS on success,

	CMD_RET_USAGE or CMD_RET_RET_FAILURE on failure

Implement efidebug “boot add” sub-command. Create or change UEFI load option.

efidebug boot add <id> <label> <interface> <devnum>[:<part>] <file> <options>

	
int do_efi_boot_rm(cmd_tbl_t * cmdtp, int flag, int argc, char *const argv)

	delete UEFI load options

Parameters

	cmd_tbl_t * cmdtp

	Command table

	int flag

	Command flag

	int argc

	Number of arguments

	char *const argv

	Argument array

Return

CMD_RET_SUCCESS on success, CMD_RET_RET_FAILURE on failure

Implement efidebug “boot rm” sub-command.
Delete UEFI load options.

efidebug boot rm <id> …

	
void show_efi_boot_opt_data(int id, void * data, size_t size)

	dump UEFI load option

Parameters

	int id

	load option number

	void * data

	value of UEFI load option variable

	size_t size

	size of the boot option

Description

Decode the value of UEFI load option variable and print information.

	
void show_efi_boot_opt(int id)

	dump UEFI load option

Parameters

	int id

	Load option number

Description

Dump information defined by UEFI load option.

	
int do_efi_boot_dump(cmd_tbl_t * cmdtp, int flag, int argc, char *const argv)

	dump all UEFI load options

Parameters

	cmd_tbl_t * cmdtp

	Command table

	int flag

	Command flag

	int argc

	Number of arguments

	char *const argv

	Argument array

Return

CMD_RET_SUCCESS on success, CMD_RET_RET_FAILURE on failure

Implement efidebug “boot dump” sub-command.
Dump information of all UEFI load options defined.

efidebug boot dump

	
int show_efi_boot_order(void)

	show order of UEFI load options

Parameters

	void

	no arguments

Return

CMD_RET_SUCCESS on success, CMD_RET_RET_FAILURE on failure

Show order of UEFI load options defined by BootOrder variable.

	
int do_efi_boot_next(cmd_tbl_t * cmdtp, int flag, int argc, char *const argv)

	manage UEFI BootNext variable

Parameters

	cmd_tbl_t * cmdtp

	Command table

	int flag

	Command flag

	int argc

	Number of arguments

	char *const argv

	Argument array

Return

	CMD_RET_SUCCESS on success,

	CMD_RET_USAGE or CMD_RET_RET_FAILURE on failure

Implement efidebug “boot next” sub-command.
Set BootNext variable.

efidebug boot next <id>

	
int do_efi_boot_order(cmd_tbl_t * cmdtp, int flag, int argc, char *const argv)

	manage UEFI BootOrder variable

Parameters

	cmd_tbl_t * cmdtp

	Command table

	int flag

	Command flag

	int argc

	Number of arguments

	char *const argv

	Argument array

Return

CMD_RET_SUCCESS on success, CMD_RET_RET_FAILURE on failure

Implement efidebug “boot order” sub-command.
Show order of UEFI load options, or change it in BootOrder variable.

efidebug boot order [<id> …]

	
int do_efi_boot_opt(cmd_tbl_t * cmdtp, int flag, int argc, char *const argv)

	manage UEFI load options

Parameters

	cmd_tbl_t * cmdtp

	Command table

	int flag

	Command flag

	int argc

	Number of arguments

	char *const argv

	Argument array

Return

	CMD_RET_SUCCESS on success,

	CMD_RET_USAGE or CMD_RET_RET_FAILURE on failure

Implement efidebug “boot” sub-command.

	
int do_efidebug(cmd_tbl_t * cmdtp, int flag, int argc, char *const argv)

	display and configure UEFI environment

Parameters

	cmd_tbl_t * cmdtp

	Command table

	int flag

	Command flag

	int argc

	Number of arguments

	char *const argv

	Argument array

Return

	CMD_RET_SUCCESS on success,

	CMD_RET_USAGE or CMD_RET_RET_FAILURE on failure

Implement efidebug command which allows us to display and
configure UEFI environment.

Initialization of the UEFI sub-system

	
efi_status_t efi_init_platform_lang(void)

	define supported languages

Parameters

	void

	no arguments

Description

Set the PlatformLangCodes and PlatformLang variables.

Return

status code

	
efi_status_t efi_init_obj_list(void)

	Initialize and populate EFI object list

Parameters

	void

	no arguments

Return

status code

Boot services

	
const char * indent_string(int level)

	returns a string for indenting with two spaces per level

Parameters

	int level

	indent level

Description

A maximum of ten indent levels is supported. Higher indent levels will be
truncated.

Return

	A string for indenting with two spaces per level is

	returned.

	
bool efi_event_is_queued(struct efi_event * event)

	check if an event is queued

Parameters

	struct efi_event * event

	event

Return

true if event is queued

	
void efi_process_event_queue(void)

	process event queue

Parameters

	void

	no arguments

	
void efi_queue_event(struct efi_event * event)

	queue an EFI event

Parameters

	struct efi_event * event

	event to signal

Description

This function queues the notification function of the event for future
execution.

	
efi_status_t is_valid_tpl(efi_uintn_t tpl)

	check if the task priority level is valid

Parameters

	efi_uintn_t tpl

	TPL level to check

Return

status code

	
void efi_signal_event(struct efi_event * event)

	signal an EFI event

Parameters

	struct efi_event * event

	event to signal

Description

This function signals an event. If the event belongs to an event group all
events of the group are signaled. If they are of type EVT_NOTIFY_SIGNAL
their notification function is queued.

For the SignalEvent service see efi_signal_event_ext.

	
unsigned long EFIAPI efi_raise_tpl(efi_uintn_t new_tpl)

	raise the task priority level

Parameters

	efi_uintn_t new_tpl

	new value of the task priority level

Description

This function implements the RaiseTpl service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

old value of the task priority level

	
void EFIAPI efi_restore_tpl(efi_uintn_t old_tpl)

	lower the task priority level

Parameters

	efi_uintn_t old_tpl

	value of the task priority level to be restored

Description

This function implements the RestoreTpl service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

	
efi_status_t EFIAPI efi_allocate_pages_ext(int type, int memory_type, efi_uintn_t pages, uint64_t * memory)

	allocate memory pages

Parameters

	int type

	type of allocation to be performed

	int memory_type

	usage type of the allocated memory

	efi_uintn_t pages

	number of pages to be allocated

	uint64_t * memory

	allocated memory

Description

This function implements the AllocatePages service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
efi_status_t EFIAPI efi_free_pages_ext(uint64_t memory, efi_uintn_t pages)

	Free memory pages.

Parameters

	uint64_t memory

	start of the memory area to be freed

	efi_uintn_t pages

	number of pages to be freed

Description

This function implements the FreePages service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
efi_status_t EFIAPI efi_get_memory_map_ext(efi_uintn_t * memory_map_size, struct efi_mem_desc * memory_map, efi_uintn_t * map_key, efi_uintn_t * descriptor_size, uint32_t * descriptor_version)

	get map describing memory usage

Parameters

	efi_uintn_t * memory_map_size

	on entry the size, in bytes, of the memory map buffer,
on exit the size of the copied memory map

	struct efi_mem_desc * memory_map

	buffer to which the memory map is written

	efi_uintn_t * map_key

	key for the memory map

	efi_uintn_t * descriptor_size

	size of an individual memory descriptor

	uint32_t * descriptor_version

	version number of the memory descriptor structure

Description

This function implements the GetMemoryMap service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
efi_status_t EFIAPI efi_allocate_pool_ext(int pool_type, efi_uintn_t size, void ** buffer)

	allocate memory from pool

Parameters

	int pool_type

	type of the pool from which memory is to be allocated

	efi_uintn_t size

	number of bytes to be allocated

	void ** buffer

	allocated memory

Description

This function implements the AllocatePool service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
efi_status_t EFIAPI efi_free_pool_ext(void * buffer)

	free memory from pool

Parameters

	void * buffer

	start of memory to be freed

Description

This function implements the FreePool service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
void efi_add_handle(efi_handle_t handle)

	add a new handle to the object list

Parameters

	efi_handle_t handle

	handle to be added

Description

The protocols list is initialized. The handle is added to the list of known
UEFI objects.

	
efi_status_t efi_create_handle(efi_handle_t * handle)

	create handle

Parameters

	efi_handle_t * handle

	new handle

Return

status code

	
efi_status_t efi_search_protocol(const efi_handle_t handle, const efi_guid_t * protocol_guid, struct efi_handler ** handler)

	find a protocol on a handle.

Parameters

	const efi_handle_t handle

	handle

	const efi_guid_t * protocol_guid

	GUID of the protocol

	struct efi_handler ** handler

	reference to the protocol

Return

status code

	
efi_status_t efi_remove_protocol(const efi_handle_t handle, const efi_guid_t * protocol, void * protocol_interface)

	delete protocol from a handle

Parameters

	const efi_handle_t handle

	handle from which the protocol shall be deleted

	const efi_guid_t * protocol

	GUID of the protocol to be deleted

	void * protocol_interface

	interface of the protocol implementation

Return

status code

	
efi_status_t efi_remove_all_protocols(const efi_handle_t handle)

	delete all protocols from a handle

Parameters

	const efi_handle_t handle

	handle from which the protocols shall be deleted

Return

status code

	
void efi_delete_handle(efi_handle_t handle)

	delete handle

Parameters

	efi_handle_t handle

	handle to delete

	
efi_status_t efi_is_event(const struct efi_event * event)

	check if a pointer is a valid event

Parameters

	const struct efi_event * event

	pointer to check

Return

status code

	
efi_status_t efi_create_event(uint32_t type, efi_uintn_t notify_tpl, void (EFIAPI *notify_function) (struct efi_event *event, void *context) notify_function, void * notify_context, efi_guid_t * group, struct efi_event ** event)

	create an event

Parameters

	uint32_t type

	type of the event to create

	efi_uintn_t notify_tpl

	task priority level of the event

	void (EFIAPI *notify_function) (struct efi_event *event, void *context) notify_function

	notification function of the event

	void * notify_context

	pointer passed to the notification function

	efi_guid_t * group

	event group

	struct efi_event ** event

	created event

Description

This function is used inside U-Boot code to create an event.

For the API function implementing the CreateEvent service see
efi_create_event_ext.

Return

status code

	
efi_status_t EFIAPI efi_create_event_ext(uint32_t type, efi_uintn_t notify_tpl, void (EFIAPI *notify_function) (struct efi_event *event, void *context) notify_function, void * notify_context, struct efi_event ** event)

	create an event

Parameters

	uint32_t type

	type of the event to create

	efi_uintn_t notify_tpl

	task priority level of the event

	void (EFIAPI *notify_function) (struct efi_event *event, void *context) notify_function

	notification function of the event

	void * notify_context

	pointer passed to the notification function

	struct efi_event ** event

	created event

Description

This function implements the CreateEvent service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
void efi_timer_check(void)

	check if a timer event has occurred

Parameters

	void

	no arguments

Description

Check if a timer event has occurred or a queued notification function should
be called.

Our timers have to work without interrupts, so we check whenever keyboard
input or disk accesses happen if enough time elapsed for them to fire.

	
efi_status_t efi_set_timer(struct efi_event * event, enum efi_timer_delay type, uint64_t trigger_time)

	set the trigger time for a timer event or stop the event

Parameters

	struct efi_event * event

	event for which the timer is set

	enum efi_timer_delay type

	type of the timer

	uint64_t trigger_time

	trigger period in multiples of 100 ns

Description

This is the function for internal usage in U-Boot. For the API function
implementing the SetTimer service see efi_set_timer_ext.

Return

status code

	
efi_status_t EFIAPI efi_set_timer_ext(struct efi_event * event, enum efi_timer_delay type, uint64_t trigger_time)

	Set the trigger time for a timer event or stop the event

Parameters

	struct efi_event * event

	event for which the timer is set

	enum efi_timer_delay type

	type of the timer

	uint64_t trigger_time

	trigger period in multiples of 100 ns

Description

This function implements the SetTimer service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
efi_status_t EFIAPI efi_wait_for_event(efi_uintn_t num_events, struct efi_event ** event, efi_uintn_t * index)

	wait for events to be signaled

Parameters

	efi_uintn_t num_events

	number of events to be waited for

	struct efi_event ** event

	events to be waited for

	efi_uintn_t * index

	index of the event that was signaled

Description

This function implements the WaitForEvent service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
efi_status_t EFIAPI efi_signal_event_ext(struct efi_event * event)

	signal an EFI event

Parameters

	struct efi_event * event

	event to signal

Description

This function implements the SignalEvent service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

This functions sets the signaled state of the event and queues the
notification function for execution.

Return

status code

	
efi_status_t EFIAPI efi_close_event(struct efi_event * event)

	close an EFI event

Parameters

	struct efi_event * event

	event to close

Description

This function implements the CloseEvent service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
efi_status_t EFIAPI efi_check_event(struct efi_event * event)

	check if an event is signaled

Parameters

	struct efi_event * event

	event to check

Description

This function implements the CheckEvent service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

If an event is not signaled yet, the notification function is queued. The
signaled state is cleared.

Return

status code

	
struct efi_object * efi_search_obj(const efi_handle_t handle)

	find the internal EFI object for a handle

Parameters

	const efi_handle_t handle

	handle to find

Return

EFI object

	
struct efi_open_protocol_info_entry * efi_create_open_info(struct efi_handler * handler)

	create open protocol info entry and add it to a protocol

Parameters

	struct efi_handler * handler

	handler of a protocol

Return

open protocol info entry

	
efi_status_t efi_delete_open_info(struct efi_open_protocol_info_item * item)

	remove an open protocol info entry from a protocol

Parameters

	struct efi_open_protocol_info_item * item

	open protocol info entry to delete

Return

status code

	
efi_status_t efi_add_protocol(const efi_handle_t handle, const efi_guid_t * protocol, void * protocol_interface)

	install new protocol on a handle

Parameters

	const efi_handle_t handle

	handle on which the protocol shall be installed

	const efi_guid_t * protocol

	GUID of the protocol to be installed

	void * protocol_interface

	interface of the protocol implementation

Return

status code

	
efi_status_t EFIAPI efi_install_protocol_interface(efi_handle_t * handle, const efi_guid_t * protocol, int protocol_interface_type, void * protocol_interface)

	install protocol interface

Parameters

	efi_handle_t * handle

	handle on which the protocol shall be installed

	const efi_guid_t * protocol

	GUID of the protocol to be installed

	int protocol_interface_type

	type of the interface to be installed,
always EFI_NATIVE_INTERFACE

	void * protocol_interface

	interface of the protocol implementation

Description

This function implements the InstallProtocolInterface service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
efi_status_t efi_get_drivers(efi_handle_t handle, const efi_guid_t * protocol, efi_uintn_t * number_of_drivers, efi_handle_t ** driver_handle_buffer)

	get all drivers associated to a controller

Parameters

	efi_handle_t handle

	handle of the controller

	const efi_guid_t * protocol

	protocol GUID (optional)

	efi_uintn_t * number_of_drivers

	number of child controllers

	efi_handle_t ** driver_handle_buffer

	handles of the the drivers

Description

The allocated buffer has to be freed with free().

Return

status code

	
efi_status_t efi_disconnect_all_drivers(efi_handle_t handle, const efi_guid_t * protocol, efi_handle_t child_handle)

	disconnect all drivers from a controller

Parameters

	efi_handle_t handle

	handle of the controller

	const efi_guid_t * protocol

	protocol GUID (optional)

	efi_handle_t child_handle

	handle of the child to destroy

Description

This function implements the DisconnectController service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
efi_status_t efi_uninstall_protocol(efi_handle_t handle, const efi_guid_t * protocol, void * protocol_interface)

	uninstall protocol interface

Parameters

	efi_handle_t handle

	handle from which the protocol shall be removed

	const efi_guid_t * protocol

	GUID of the protocol to be removed

	void * protocol_interface

	interface to be removed

Description

This function DOES NOT delete a handle without installed protocol.

Return

status code

	
efi_status_t EFIAPI efi_uninstall_protocol_interface(efi_handle_t handle, const efi_guid_t * protocol, void * protocol_interface)

	uninstall protocol interface

Parameters

	efi_handle_t handle

	handle from which the protocol shall be removed

	const efi_guid_t * protocol

	GUID of the protocol to be removed

	void * protocol_interface

	interface to be removed

Description

This function implements the UninstallProtocolInterface service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
efi_status_t EFIAPI efi_register_protocol_notify(const efi_guid_t * protocol, struct efi_event * event, void ** registration)

	register an event for notification when a protocol is installed.

Parameters

	const efi_guid_t * protocol

	GUID of the protocol whose installation shall be notified

	struct efi_event * event

	event to be signaled upon installation of the protocol

	void ** registration

	key for retrieving the registration information

Description

This function implements the RegisterProtocolNotify service.
See the Unified Extensible Firmware Interface (UEFI) specification
for details.

Return

status code

	
int efi_search(enum efi_locate_search_type search_type, const efi_guid_t * protocol, efi_handle_t handle)

	determine if an EFI handle implements a protocol

Parameters

	enum efi_locate_search_type search_type

	selection criterion

	const efi_guid_t * protocol

	GUID of the protocol

	efi_handle_t handle

	handle

Description

See the documentation of the LocateHandle service in the UEFI specification.

Return

0 if the handle implements the protocol

	
struct efi_register_notify_event * efi_check_register_notify_event(void * key)

	check if registration key is valid

Parameters

	void * key

	registration key

Description

Check that a pointer is a valid registration key as returned by
RegisterProtocolNotify().

Return

valid registration key or NULL

	
efi_status_t efi_locate_handle(enum efi_locate_search_type search_type, const efi_guid_t * protocol, void * search_key, efi_uintn_t * buffer_size, efi_handle_t * buffer)

	locate handles implementing a protocol

Parameters

	enum efi_locate_search_type search_type

	selection criterion

	const efi_guid_t * protocol

	GUID of the protocol

	void * search_key

	registration key

	efi_uintn_t * buffer_size

	size of the buffer to receive the handles in bytes

	efi_handle_t * buffer

	buffer to receive the relevant handles

Description

This function is meant for U-Boot internal calls. For the API implementation
of the LocateHandle service see efi_locate_handle_ext.

Return

status code

	
efi_status_t EFIAPI efi_locate_handle_ext(enum efi_locate_search_type search_type, const efi_guid_t * protocol, void * search_key, efi_uintn_t * buffer_size, efi_handle_t * buffer)

	locate handles implementing a protocol.

Parameters

	enum efi_locate_search_type search_type

	selection criterion

	const efi_guid_t * protocol

	GUID of the protocol

	void * search_key

	registration key

	efi_uintn_t * buffer_size

	size of the buffer to receive the handles in bytes

	efi_handle_t * buffer

	buffer to receive the relevant handles

Description

This function implements the LocateHandle service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

0 if the handle implements the protocol

	
void efi_remove_configuration_table(int i)

	collapses configuration table entries, removing index i

Parameters

	int i

	index of the table entry to be removed

	
efi_status_t efi_install_configuration_table(const efi_guid_t * guid, void * table)

	adds, updates, or removes a configuration table

Parameters

	const efi_guid_t * guid

	GUID of the installed table

	void * table

	table to be installed

Description

This function is used for internal calls. For the API implementation of the
InstallConfigurationTable service see efi_install_configuration_table_ext.

Return

status code

	
efi_status_t EFIAPI efi_install_configuration_table_ext(efi_guid_t * guid, void * table)

	Adds, updates, or removes a configuration table.

Parameters

	efi_guid_t * guid

	GUID of the installed table

	void * table

	table to be installed

Description

This function implements the InstallConfigurationTable service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
efi_status_t efi_setup_loaded_image(struct efi_device_path * device_path, struct efi_device_path * file_path, struct efi_loaded_image_obj ** handle_ptr, struct efi_loaded_image ** info_ptr)

	initialize a loaded image

Parameters

	struct efi_device_path * device_path

	device path of the loaded image

	struct efi_device_path * file_path

	file path of the loaded image

	struct efi_loaded_image_obj ** handle_ptr

	handle of the loaded image

	struct efi_loaded_image ** info_ptr

	loaded image protocol

Description

Initialize a loaded_image_info and loaded_image_info object with correct
protocols, boot-device, etc.

In case of an error *handle_ptr and *info_ptr are set to NULL and an error
code is returned.

Return

status code

	
efi_status_t efi_load_image_from_path(struct efi_device_path * file_path, void ** buffer, efi_uintn_t * size)

	load an image using a file path

Parameters

	struct efi_device_path * file_path

	the path of the image to load

	void ** buffer

	buffer containing the loaded image

	efi_uintn_t * size

	size of the loaded image

Description

Read a file into a buffer allocated as EFI_BOOT_SERVICES_DATA. It is the
callers obligation to update the memory type as needed.

Return

status code

	
efi_status_t EFIAPI efi_load_image(bool boot_policy, efi_handle_t parent_image, struct efi_device_path * file_path, void * source_buffer, efi_uintn_t source_size, efi_handle_t * image_handle)

	load an EFI image into memory

Parameters

	bool boot_policy

	true for request originating from the boot manager

	efi_handle_t parent_image

	the caller’s image handle

	struct efi_device_path * file_path

	the path of the image to load

	void * source_buffer

	memory location from which the image is installed

	efi_uintn_t source_size

	size of the memory area from which the image is installed

	efi_handle_t * image_handle

	handle for the newly installed image

Description

This function implements the LoadImage service.

See the Unified Extensible Firmware Interface (UEFI) specification
for details.

Return

status code

	
void efi_exit_caches(void)

	fix up caches for EFI payloads if necessary

Parameters

	void

	no arguments

	
efi_status_t EFIAPI efi_exit_boot_services(efi_handle_t image_handle, efi_uintn_t map_key)

	stop all boot services

Parameters

	efi_handle_t image_handle

	handle of the loaded image

	efi_uintn_t map_key

	key of the memory map

Description

This function implements the ExitBootServices service.

See the Unified Extensible Firmware Interface (UEFI) specification
for details.

All timer events are disabled. For exit boot services events the
notification function is called. The boot services are disabled in the
system table.

Return

status code

	
efi_status_t EFIAPI efi_get_next_monotonic_count(uint64_t * count)

	get next value of the counter

Parameters

	uint64_t * count

	returned value of the counter

Description

This function implements the NextMonotonicCount service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
efi_status_t EFIAPI efi_stall(unsigned long microseconds)

	sleep

Parameters

	unsigned long microseconds

	period to sleep in microseconds

Description

This function implements the Stall service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
efi_status_t EFIAPI efi_set_watchdog_timer(unsigned long timeout, uint64_t watchdog_code, unsigned long data_size, uint16_t * watchdog_data)

	reset the watchdog timer

Parameters

	unsigned long timeout

	seconds before reset by watchdog

	uint64_t watchdog_code

	code to be logged when resetting

	unsigned long data_size

	size of buffer in bytes

	uint16_t * watchdog_data

	buffer with data describing the reset reason

Description

This function implements the SetWatchdogTimer service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
efi_status_t EFIAPI efi_close_protocol(efi_handle_t handle, const efi_guid_t * protocol, efi_handle_t agent_handle, efi_handle_t controller_handle)

	close a protocol

Parameters

	efi_handle_t handle

	handle on which the protocol shall be closed

	const efi_guid_t * protocol

	GUID of the protocol to close

	efi_handle_t agent_handle

	handle of the driver

	efi_handle_t controller_handle

	handle of the controller

Description

This function implements the CloseProtocol service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
efi_status_t EFIAPI efi_open_protocol_information(efi_handle_t handle, const efi_guid_t * protocol, struct efi_open_protocol_info_entry ** entry_buffer, efi_uintn_t * entry_count)

	provide information about then open status of a protocol on a handle

Parameters

	efi_handle_t handle

	handle for which the information shall be retrieved

	const efi_guid_t * protocol

	GUID of the protocol

	struct efi_open_protocol_info_entry ** entry_buffer

	buffer to receive the open protocol information

	efi_uintn_t * entry_count

	number of entries available in the buffer

Description

This function implements the OpenProtocolInformation service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
efi_status_t EFIAPI efi_protocols_per_handle(efi_handle_t handle, efi_guid_t *** protocol_buffer, efi_uintn_t * protocol_buffer_count)

	get protocols installed on a handle

Parameters

	efi_handle_t handle

	handle for which the information is retrieved

	efi_guid_t *** protocol_buffer

	buffer with protocol GUIDs

	efi_uintn_t * protocol_buffer_count

	number of entries in the buffer

Description

This function implements the ProtocolsPerHandleService.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
efi_status_t EFIAPI efi_locate_handle_buffer(enum efi_locate_search_type search_type, const efi_guid_t * protocol, void * search_key, efi_uintn_t * no_handles, efi_handle_t ** buffer)

	locate handles implementing a protocol

Parameters

	enum efi_locate_search_type search_type

	selection criterion

	const efi_guid_t * protocol

	GUID of the protocol

	void * search_key

	registration key

	efi_uintn_t * no_handles

	number of returned handles

	efi_handle_t ** buffer

	buffer with the returned handles

Description

This function implements the LocateHandleBuffer service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
efi_status_t EFIAPI efi_locate_protocol(const efi_guid_t * protocol, void * registration, void ** protocol_interface)

	find an interface implementing a protocol

Parameters

	const efi_guid_t * protocol

	GUID of the protocol

	void * registration

	registration key passed to the notification function

	void ** protocol_interface

	interface implementing the protocol

Description

This function implements the LocateProtocol service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
efi_status_t EFIAPI efi_locate_device_path(const efi_guid_t * protocol, struct efi_device_path ** device_path, efi_handle_t * device)

	Get the device path and handle of an device implementing a protocol

Parameters

	const efi_guid_t * protocol

	GUID of the protocol

	struct efi_device_path ** device_path

	device path

	efi_handle_t * device

	handle of the device

Description

This function implements the LocateDevicePath service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
efi_status_t EFIAPI efi_install_multiple_protocol_interfaces(efi_handle_t * handle, ...)

	Install multiple protocol interfaces

Parameters

	efi_handle_t * handle

	handle on which the protocol interfaces shall be installed

	...

	NULL terminated argument list with pairs of protocol GUIDS and
interfaces

Description

This function implements the MultipleProtocolInterfaces service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
efi_status_t EFIAPI efi_uninstall_multiple_protocol_interfaces(efi_handle_t handle, ...)

	uninstall multiple protocol interfaces

Parameters

	efi_handle_t handle

	handle from which the protocol interfaces shall be removed

	...

	NULL terminated argument list with pairs of protocol GUIDS and
interfaces

Description

This function implements the UninstallMultipleProtocolInterfaces service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
efi_status_t EFIAPI efi_calculate_crc32(const void * data, efi_uintn_t data_size, u32 * crc32_p)

	calculate cyclic redundancy code

Parameters

	const void * data

	buffer with data

	efi_uintn_t data_size

	size of buffer in bytes

	u32 * crc32_p

	cyclic redundancy code

Description

This function implements the CalculateCrc32 service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
void EFIAPI efi_copy_mem(void * destination, const void * source, size_t length)

	copy memory

Parameters

	void * destination

	destination of the copy operation

	const void * source

	source of the copy operation

	size_t length

	number of bytes to copy

Description

This function implements the CopyMem service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

	
void EFIAPI efi_set_mem(void * buffer, size_t size, uint8_t value)

	Fill memory with a byte value.

Parameters

	void * buffer

	buffer to fill

	size_t size

	size of buffer in bytes

	uint8_t value

	byte to copy to the buffer

Description

This function implements the SetMem service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

	
efi_status_t efi_protocol_open(struct efi_handler * handler, void ** protocol_interface, void * agent_handle, void * controller_handle, uint32_t attributes)

	open protocol interface on a handle

Parameters

	struct efi_handler * handler

	handler of a protocol

	void ** protocol_interface

	interface implementing the protocol

	void * agent_handle

	handle of the driver

	void * controller_handle

	handle of the controller

	uint32_t attributes

	attributes indicating how to open the protocol

Return

status code

	
efi_status_t EFIAPI efi_open_protocol(efi_handle_t handle, const efi_guid_t * protocol, void ** protocol_interface, efi_handle_t agent_handle, efi_handle_t controller_handle, uint32_t attributes)

	open protocol interface on a handle

Parameters

	efi_handle_t handle

	handle on which the protocol shall be opened

	const efi_guid_t * protocol

	GUID of the protocol

	void ** protocol_interface

	interface implementing the protocol

	efi_handle_t agent_handle

	handle of the driver

	efi_handle_t controller_handle

	handle of the controller

	uint32_t attributes

	attributes indicating how to open the protocol

Description

This function implements the OpenProtocol interface.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
efi_status_t EFIAPI efi_start_image(efi_handle_t image_handle, efi_uintn_t * exit_data_size, u16 ** exit_data)

	call the entry point of an image

Parameters

	efi_handle_t image_handle

	handle of the image

	efi_uintn_t * exit_data_size

	size of the buffer

	u16 ** exit_data

	buffer to receive the exit data of the called image

Description

This function implements the StartImage service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
efi_status_t efi_delete_image(struct efi_loaded_image_obj * image_obj, struct efi_loaded_image * loaded_image_protocol)

	delete loaded image from memory)

Parameters

	struct efi_loaded_image_obj * image_obj

	handle of the loaded image

	struct efi_loaded_image * loaded_image_protocol

	loaded image protocol

	
efi_status_t EFIAPI efi_unload_image(efi_handle_t image_handle)

	unload an EFI image

Parameters

	efi_handle_t image_handle

	handle of the image to be unloaded

Description

This function implements the UnloadImage service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
efi_status_t efi_update_exit_data(struct efi_loaded_image_obj * image_obj, efi_uintn_t exit_data_size, u16 * exit_data)

	fill exit data parameters of StartImage()

Parameters

	struct efi_loaded_image_obj * image_obj

	image handle

	efi_uintn_t exit_data_size

	size of the exit data buffer

	u16 * exit_data

	buffer with data returned by UEFI payload

Return

status code

	
efi_status_t EFIAPI efi_exit(efi_handle_t image_handle, efi_status_t exit_status, efi_uintn_t exit_data_size, u16 * exit_data)

	leave an EFI application or driver

Parameters

	efi_handle_t image_handle

	handle of the application or driver that is exiting

	efi_status_t exit_status

	status code

	efi_uintn_t exit_data_size

	size of the buffer in bytes

	u16 * exit_data

	buffer with data describing an error

Description

This function implements the Exit service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
efi_status_t EFIAPI efi_handle_protocol(efi_handle_t handle, const efi_guid_t * protocol, void ** protocol_interface)

	get interface of a protocol on a handle

Parameters

	efi_handle_t handle

	handle on which the protocol shall be opened

	const efi_guid_t * protocol

	GUID of the protocol

	void ** protocol_interface

	interface implementing the protocol

Description

This function implements the HandleProtocol service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
efi_status_t efi_bind_controller(efi_handle_t controller_handle, efi_handle_t driver_image_handle, struct efi_device_path * remain_device_path)

	bind a single driver to a controller

Parameters

	efi_handle_t controller_handle

	controller handle

	efi_handle_t driver_image_handle

	driver handle

	struct efi_device_path * remain_device_path

	remaining path

Return

status code

	
efi_status_t efi_connect_single_controller(efi_handle_t controller_handle, efi_handle_t * driver_image_handle, struct efi_device_path * remain_device_path)

	connect a single driver to a controller

Parameters

	efi_handle_t controller_handle

	controller

	efi_handle_t * driver_image_handle

	driver

	struct efi_device_path * remain_device_path

	remaining path

Return

status code

	
efi_status_t EFIAPI efi_connect_controller(efi_handle_t controller_handle, efi_handle_t * driver_image_handle, struct efi_device_path * remain_device_path, bool recursive)

	connect a controller to a driver

Parameters

	efi_handle_t controller_handle

	handle of the controller

	efi_handle_t * driver_image_handle

	handle of the driver

	struct efi_device_path * remain_device_path

	device path of a child controller

	bool recursive

	true to connect all child controllers

Description

This function implements the ConnectController service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

First all driver binding protocol handles are tried for binding drivers.
Afterwards all handles that have opened a protocol of the controller
with EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER are connected to drivers.

Return

status code

	
efi_status_t EFIAPI efi_reinstall_protocol_interface(efi_handle_t handle, const efi_guid_t * protocol, void * old_interface, void * new_interface)

	reinstall protocol interface

Parameters

	efi_handle_t handle

	handle on which the protocol shall be reinstalled

	const efi_guid_t * protocol

	GUID of the protocol to be installed

	void * old_interface

	interface to be removed

	void * new_interface

	interface to be installed

Description

This function implements the ReinstallProtocolInterface service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

The old interface is uninstalled. The new interface is installed.
Drivers are connected.

Return

status code

	
efi_status_t efi_get_child_controllers(struct efi_object * efiobj, efi_handle_t driver_handle, efi_uintn_t * number_of_children, efi_handle_t ** child_handle_buffer)

	get all child controllers associated to a driver

Parameters

	struct efi_object * efiobj

	handle of the controller

	efi_handle_t driver_handle

	handle of the driver

	efi_uintn_t * number_of_children

	number of child controllers

	efi_handle_t ** child_handle_buffer

	handles of the the child controllers

Description

The allocated buffer has to be freed with free().

Return

status code

	
efi_status_t EFIAPI efi_disconnect_controller(efi_handle_t controller_handle, efi_handle_t driver_image_handle, efi_handle_t child_handle)

	disconnect a controller from a driver

Parameters

	efi_handle_t controller_handle

	handle of the controller

	efi_handle_t driver_image_handle

	handle of the driver

	efi_handle_t child_handle

	handle of the child to destroy

Description

This function implements the DisconnectController service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
efi_status_t efi_initialize_system_table(void)

	Initialize system table

Parameters

	void

	no arguments

Return

status code

Image relocation

	
efi_status_t efi_print_image_info(struct efi_loaded_image_obj * obj, struct efi_loaded_image * image, void * pc)

	print information about a loaded image

Parameters

	struct efi_loaded_image_obj * obj

	EFI object

	struct efi_loaded_image * image

	loaded image

	void * pc

	program counter (use NULL to suppress offset output)

Description

If the program counter is located within the image the offset to the base
address is shown.

Return

status code

	
void efi_print_image_infos(void * pc)

	print information about all loaded images

Parameters

	void * pc

	program counter (use NULL to suppress offset output)

	
efi_status_t efi_loader_relocate(const IMAGE_BASE_RELOCATION * rel, unsigned long rel_size, void * efi_reloc, unsigned long pref_address)

	relocate UEFI binary

Parameters

	const IMAGE_BASE_RELOCATION * rel

	pointer to the relocation table

	unsigned long rel_size

	size of the relocation table in bytes

	void * efi_reloc

	actual load address of the image

	unsigned long pref_address

	preferred load address of the image

Return

status code

	
void efi_set_code_and_data_type(struct efi_loaded_image * loaded_image_info, uint16_t image_type)

	determine the memory types to be used for code and data.

Parameters

	struct efi_loaded_image * loaded_image_info

	image descriptor

	uint16_t image_type

	field Subsystem of the optional header for
Windows specific field

	
efi_status_t efi_load_pe(struct efi_loaded_image_obj * handle, void * efi, struct efi_loaded_image * loaded_image_info)

	relocate EFI binary

Parameters

	struct efi_loaded_image_obj * handle

	loaded image handle

	void * efi

	pointer to the EFI binary

	struct efi_loaded_image * loaded_image_info

	loaded image protocol

Description

This function loads all sections from a PE binary into a newly reserved
piece of memory. On success the entry point is returned as handle->entry.

Return

status code

Memory services

	
struct efi_pool_allocation

	memory block allocated from pool

Definition

struct efi_pool_allocation {
 u64 num_pages;
 u64 checksum;
 char data[];
};

Members

	num_pages

	number of pages allocated

	checksum

	checksum

	data

	allocated pool memory

Description

U-Boot services each UEFI AllocatePool() request as a separate
(multiple) page allocation. We have to track the number of pages
to be able to free the correct amount later.

The checksum calculated in function checksum() is used in FreePool() to avoid
freeing memory not allocated by AllocatePool() and duplicate freeing.

EFI requires 8 byte alignment for pool allocations, so we can
prepend each allocation with these header fields.

	
u64 checksum(struct efi_pool_allocation * alloc)

	calculate checksum for memory allocated from pool

Parameters

	struct efi_pool_allocation * alloc

	allocation header

Return

checksum, always non-zero

	
efi_status_t efi_add_memory_map(uint64_t start, uint64_t pages, int memory_type, bool overlap_only_ram)

	add memory area to the memory map

Parameters

	uint64_t start

	start address, must be a multiple of EFI_PAGE_SIZE

	uint64_t pages

	number of pages to add

	int memory_type

	type of memory added

	bool overlap_only_ram

	the memory area must overlap existing

Return

status code

	
efi_status_t efi_check_allocated(u64 addr, bool must_be_allocated)

	validate address to be freed

Parameters

	u64 addr

	address of page to be freed

	bool must_be_allocated

	return success if the page is allocated

Description

Check that the address is within allocated memory:

	The address must be in a range of the memory map.

	The address may not point to EFI_CONVENTIONAL_MEMORY.

Page alignment is not checked as this is not a requirement of
efi_free_pool().

Return

status code

	
efi_status_t efi_free_pages(uint64_t memory, efi_uintn_t pages)

	free memory pages

Parameters

	uint64_t memory

	start of the memory area to be freed

	efi_uintn_t pages

	number of pages to be freed

Return

status code

	
efi_status_t efi_allocate_pool(int pool_type, efi_uintn_t size, void ** buffer)

	allocate memory from pool

Parameters

	int pool_type

	type of the pool from which memory is to be allocated

	efi_uintn_t size

	number of bytes to be allocated

	void ** buffer

	allocated memory

Return

status code

	
efi_status_t efi_free_pool(void * buffer)

	free memory from pool

Parameters

	void * buffer

	start of memory to be freed

Return

status code

	
efi_status_t efi_add_conventional_memory_map(u64 ram_start, u64 ram_end, u64 ram_top)

	add a RAM memory area to the map

Parameters

	u64 ram_start

	start address of a RAM memory area

	u64 ram_end

	end address of a RAM memory area

	u64 ram_top

	max address to be used as conventional memory

Return

status code

Runtime services

	
efi_status_t efi_init_runtime_supported(void)

	create runtime properties table

Parameters

	void

	no arguments

Description

Create a configuration table specifying which services are available at
runtime.

Return

status code

	
void __efi_runtime efi_update_table_header_crc32(struct efi_table_hdr * table)

	Update crc32 in table header

Parameters

	struct efi_table_hdr * table

	EFI table

	
void EFIAPI efi_reset_system_boottime(enum efi_reset_type reset_type, efi_status_t reset_status, unsigned long data_size, void * reset_data)

	reset system at boot time

Parameters

	enum efi_reset_type reset_type

	type of reset to perform

	efi_status_t reset_status

	status code for the reset

	unsigned long data_size

	size of reset_data

	void * reset_data

	information about the reset

Description

This function implements the ResetSystem() runtime service before
SetVirtualAddressMap() is called.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

	
efi_status_t EFIAPI efi_get_time_boottime(struct efi_time * time, struct efi_time_cap * capabilities)

	get current time at boot time

Parameters

	struct efi_time * time

	pointer to structure to receive current time

	struct efi_time_cap * capabilities

	pointer to structure to receive RTC properties

Description

This function implements the GetTime runtime service before
SetVirtualAddressMap() is called.

See the Unified Extensible Firmware Interface (UEFI) specification
for details.

Return

status code

	
int efi_validate_time(struct efi_time * time)

	checks if timestamp is valid

Parameters

	struct efi_time * time

	timestamp to validate

Return

0 if timestamp is valid, 1 otherwise

	
efi_status_t EFIAPI efi_set_time_boottime(struct efi_time * time)

	set current time

Parameters

	struct efi_time * time

	pointer to structure to with current time

Description

This function implements the SetTime() runtime service before
SetVirtualAddressMap() is called.

See the Unified Extensible Firmware Interface (UEFI) specification
for details.

Return

status code

	
void __efi_runtime EFIAPI efi_reset_system(enum efi_reset_type reset_type, efi_status_t reset_status, unsigned long data_size, void * reset_data)

	reset system

Parameters

	enum efi_reset_type reset_type

	type of reset to perform

	efi_status_t reset_status

	status code for the reset

	unsigned long data_size

	size of reset_data

	void * reset_data

	information about the reset

Description

This function implements the ResetSystem() runtime service after
SetVirtualAddressMap() is called. It only executes an endless loop.
Boards may override the helpers below to implement reset functionality.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

	
efi_status_t efi_reset_system_init(void)

	initialize the reset driver

Parameters

	void

	no arguments

Description

Boards may override this function to initialize the reset driver.

	
efi_status_t __efi_runtime EFIAPI efi_get_time(struct efi_time * time, struct efi_time_cap * capabilities)

	get current time

Parameters

	struct efi_time * time

	pointer to structure to receive current time

	struct efi_time_cap * capabilities

	pointer to structure to receive RTC properties

Description

This function implements the GetTime runtime service after
SetVirtualAddressMap() is called. As the U-Boot driver are not available
anymore only an error code is returned.

See the Unified Extensible Firmware Interface (UEFI) specification
for details.

Return

status code

	
efi_status_t __efi_runtime EFIAPI efi_set_time(struct efi_time * time)

	set current time

Parameters

	struct efi_time * time

	pointer to structure to with current time

Description

This function implements the SetTime runtime service after
SetVirtualAddressMap() is called. As the U-Boot driver are not available
anymore only an error code is returned.

See the Unified Extensible Firmware Interface (UEFI) specification
for details.

Return

status code

	
bool efi_is_runtime_service_pointer(void * p)

	check if pointer points to runtime table

Parameters

	void * p

	pointer to check

Return

	true if the pointer points to a service function pointer in the

	runtime table

	
void efi_runtime_detach(void)

	detach unimplemented runtime functions

Parameters

	void

	no arguments

	
__efi_runtime efi_status_t EFIAPI efi_set_virtual_address_map_runtime(efi_uintn_t memory_map_size, efi_uintn_t descriptor_size, uint32_t descriptor_version, struct efi_mem_desc * virtmap)

	change from physical to virtual mapping

Parameters

	efi_uintn_t memory_map_size

	size of the virtual map

	efi_uintn_t descriptor_size

	size of an entry in the map

	uint32_t descriptor_version

	version of the map entries

	struct efi_mem_desc * virtmap

	virtual address mapping information

Description

This function implements the SetVirtualAddressMap() runtime service after
it is first called.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code EFI_UNSUPPORTED

	
__efi_runtime efi_status_t EFIAPI efi_convert_pointer_runtime(efi_uintn_t debug_disposition, void ** address)

	convert from physical to virtual pointer

Parameters

	efi_uintn_t debug_disposition

	indicates if pointer may be converted to NULL

	void ** address

	pointer to be converted

Description

This function implements the ConvertPointer() runtime service after
the first call to SetVirtualAddressMap().

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code EFI_UNSUPPORTED

	
__efi_runtime efi_status_t EFIAPI efi_convert_pointer(efi_uintn_t debug_disposition, void ** address)

	convert from physical to virtual pointer

Parameters

	efi_uintn_t debug_disposition

	indicates if pointer may be converted to NULL

	void ** address

	pointer to be converted

Description

This function implements the ConvertPointer() runtime service until
the first call to SetVirtualAddressMap().

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
efi_status_t EFIAPI efi_set_virtual_address_map(efi_uintn_t memory_map_size, efi_uintn_t descriptor_size, uint32_t descriptor_version, struct efi_mem_desc * virtmap)

	change from physical to virtual mapping

Parameters

	efi_uintn_t memory_map_size

	size of the virtual map

	efi_uintn_t descriptor_size

	size of an entry in the map

	uint32_t descriptor_version

	version of the map entries

	struct efi_mem_desc * virtmap

	virtual address mapping information

Description

This function implements the SetVirtualAddressMap() runtime service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
efi_status_t efi_add_runtime_mmio(void * mmio_ptr, u64 len)

	add memory-mapped IO region

Parameters

	void * mmio_ptr

	pointer to a pointer to the start of the memory-mapped
IO region

	u64 len

	size of the memory-mapped IO region

Description

This function adds a memory-mapped IO region to the memory map to make it
available at runtime.

Return

status code

	
efi_status_t __efi_runtime EFIAPI efi_unimplemented(void)

	replacement function, returns EFI_UNSUPPORTED

Parameters

	void

	no arguments

Description

This function is used after SetVirtualAddressMap() is called as replacement
for services that are not available anymore due to constraints of the U-Boot
implementation.

Return

EFI_UNSUPPORTED

	
efi_status_t __efi_runtime EFIAPI efi_update_capsule(struct efi_capsule_header ** capsule_header_array, efi_uintn_t capsule_count, u64 scatter_gather_list)

	process information from operating system

Parameters

	struct efi_capsule_header ** capsule_header_array

	pointer to array of virtual pointers

	efi_uintn_t capsule_count

	number of pointers in capsule_header_array

	u64 scatter_gather_list

	pointer to arry of physical pointers

Description

This function implements the UpdateCapsule() runtime service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
efi_status_t __efi_runtime EFIAPI efi_query_capsule_caps(struct efi_capsule_header ** capsule_header_array, efi_uintn_t capsule_count, u64 * maximum_capsule_size, u32 * reset_type)

	check if capsule is supported

Parameters

	struct efi_capsule_header ** capsule_header_array

	pointer to array of virtual pointers

	efi_uintn_t capsule_count

	number of pointers in capsule_header_array

	u64 * maximum_capsule_size

	maximum capsule size

	u32 * reset_type

	type of reset needed for capsule update

Description

This function implements the QueryCapsuleCapabilities() runtime service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

Variable services

	
efi_status_t efi_to_native(char ** native, const u16 * variable_name, const efi_guid_t * vendor)

	convert the UEFI variable name and vendor GUID to U-Boot variable name

Parameters

	char ** native

	pointer to pointer to U-Boot variable name

	const u16 * variable_name

	UEFI variable name

	const efi_guid_t * vendor

	vendor GUID

Description

The U-Boot variable name is a concatenation of prefix ‘efi’, the hexstring
encoded vendor GUID, and the UTF-8 encoded UEFI variable name separated by
underscores, e.g. ‘efi_8be4df61-93ca-11d2-aa0d-00e098032b8c_BootOrder’.

Return

status code

	
const char * prefix(const char * str, const char * prefix)

	skip over prefix

Parameters

	const char * str

	string with prefix

	const char * prefix

	prefix string

Description

Skip over a prefix string.

Return

string without prefix, or NULL if prefix not found

	
const char * parse_attr(const char * str, u32 * attrp)

	decode attributes part of variable value

Parameters

	const char * str

	value of U-Boot variable

	u32 * attrp

	pointer to UEFI attributes

Description

Convert the string encoded attributes of a UEFI variable to a bit mask.
TODO: Several attributes are not supported.

Return

pointer to remainder of U-Boot variable value

	
efi_status_t EFIAPI efi_get_variable(u16 * variable_name, const efi_guid_t * vendor, u32 * attributes, efi_uintn_t * data_size, void * data)

	retrieve value of a UEFI variable

Parameters

	u16 * variable_name

	name of the variable

	const efi_guid_t * vendor

	vendor GUID

	u32 * attributes

	attributes of the variable

	efi_uintn_t * data_size

	size of the buffer to which the variable value is copied

	void * data

	buffer to which the variable value is copied

Description

This function implements the GetVariable runtime service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
efi_status_t parse_uboot_variable(char * variable, efi_uintn_t * variable_name_size, u16 * variable_name, const efi_guid_t * vendor, u32 * attributes)

	parse a u-boot variable and get uefi-related information

Parameters

	char * variable

	whole data of u-boot variable (ie. name=value)

	efi_uintn_t * variable_name_size

	size of variable_name buffer in byte

	u16 * variable_name

	name of uefi variable in u16, null-terminated

	const efi_guid_t * vendor

	vendor’s guid

	u32 * attributes

	attributes

Description

A uefi variable is encoded into a u-boot variable as described above.
This function parses such a u-boot variable and retrieve uefi-related
information into respective parameters. In return, variable_name_size
is the size of variable name including NULL.

Return

	EFI_SUCCESS if parsing is OK, EFI_NOT_FOUND when

	the entire variable list has been returned,
otherwise non-zero status code

	
efi_status_t EFIAPI efi_get_next_variable_name(efi_uintn_t * variable_name_size, u16 * variable_name, efi_guid_t * vendor)

	enumerate the current variable names

Parameters

	efi_uintn_t * variable_name_size

	size of variable_name buffer in byte

	u16 * variable_name

	name of uefi variable’s name in u16

	efi_guid_t * vendor

	vendor’s guid

Description

This function implements the GetNextVariableName service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
efi_status_t EFIAPI efi_set_variable(u16 * variable_name, const efi_guid_t * vendor, u32 attributes, efi_uintn_t data_size, const void * data)

	set value of a UEFI variable

Parameters

	u16 * variable_name

	name of the variable

	const efi_guid_t * vendor

	vendor GUID

	u32 attributes

	attributes of the variable

	efi_uintn_t data_size

	size of the buffer with the variable value

	const void * data

	buffer with the variable value

Description

This function implements the SetVariable runtime service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
efi_status_t __efi_runtime EFIAPI efi_query_variable_info(u32 attributes, u64 * maximum_variable_storage_size, u64 * remaining_variable_storage_size, u64 * maximum_variable_size)

	get information about EFI variables

Parameters

	u32 attributes

	bitmask to select variables to be
queried

	u64 * maximum_variable_storage_size

	maximum size of storage area for the
selected variable types

	u64 * remaining_variable_storage_size

	remaining size of storage are for the
selected variable types

	u64 * maximum_variable_size

	maximum size of a variable of the
selected type

Description

This function implements the QueryVariableInfo() runtime service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
efi_status_t __efi_runtime EFIAPI efi_get_variable_runtime(u16 * variable_name, const efi_guid_t * vendor, u32 * attributes, efi_uintn_t * data_size, void * data)

	runtime implementation of GetVariable()

Parameters

	u16 * variable_name

	name of the variable

	const efi_guid_t * vendor

	vendor GUID

	u32 * attributes

	attributes of the variable

	efi_uintn_t * data_size

	size of the buffer to which the variable value is copied

	void * data

	buffer to which the variable value is copied

Return

status code

	
efi_status_t __efi_runtime EFIAPI efi_get_next_variable_name_runtime(efi_uintn_t * variable_name_size, u16 * variable_name, efi_guid_t * vendor)

	runtime implementation of GetNextVariable()

Parameters

	efi_uintn_t * variable_name_size

	size of variable_name buffer in byte

	u16 * variable_name

	name of uefi variable’s name in u16

	efi_guid_t * vendor

	vendor’s guid

Return

status code

	
efi_status_t __efi_runtime EFIAPI efi_set_variable_runtime(u16 * variable_name, const efi_guid_t * vendor, u32 attributes, efi_uintn_t data_size, const void * data)

	runtime implementation of SetVariable()

Parameters

	u16 * variable_name

	name of the variable

	const efi_guid_t * vendor

	vendor GUID

	u32 attributes

	attributes of the variable

	efi_uintn_t data_size

	size of the buffer with the variable value

	const void * data

	buffer with the variable value

Return

status code

	
void efi_variables_boot_exit_notify(void)

	notify ExitBootServices() is called

Parameters

	void

	no arguments

	
efi_status_t efi_init_variables(void)

	initialize variable services

Parameters

	void

	no arguments

Return

status code

UEFI drivers

UEFI driver uclass

	
efi_status_t check_node_type(efi_handle_t handle)

	check node type

Parameters

	efi_handle_t handle

	handle to be checked

Description

We do not support partitions as controller handles.

Return

status code

	
efi_status_t EFIAPI efi_uc_supported(struct efi_driver_binding_protocol * this, efi_handle_t controller_handle, struct efi_device_path * remaining_device_path)

	check if the driver supports the controller

Parameters

	struct efi_driver_binding_protocol * this

	driver binding protocol

	efi_handle_t controller_handle

	handle of the controller

	struct efi_device_path * remaining_device_path

	path specifying the child controller

Return

status code

	
efi_status_t EFIAPI efi_uc_start(struct efi_driver_binding_protocol * this, efi_handle_t controller_handle, struct efi_device_path * remaining_device_path)

	create child controllers and attach driver

Parameters

	struct efi_driver_binding_protocol * this

	driver binding protocol

	efi_handle_t controller_handle

	handle of the controller

	struct efi_device_path * remaining_device_path

	path specifying the child controller

Return

status code

	
efi_status_t disconnect_child(efi_handle_t controller_handle, efi_handle_t child_handle)

	remove a single child controller from the parent controller

Parameters

	efi_handle_t controller_handle

	parent controller

	efi_handle_t child_handle

	child controller

Return

status code

	
efi_status_t EFIAPI efi_uc_stop(struct efi_driver_binding_protocol * this, efi_handle_t controller_handle, size_t number_of_children, efi_handle_t * child_handle_buffer)

	Remove child controllers and disconnect the controller

Parameters

	struct efi_driver_binding_protocol * this

	driver binding protocol

	efi_handle_t controller_handle

	handle of the controller

	size_t number_of_children

	number of child controllers to remove

	efi_handle_t * child_handle_buffer

	handles of the child controllers to remove

Return

status code

	
efi_status_t efi_add_driver(struct driver * drv)

	add driver

Parameters

	struct driver * drv

	driver to add

Return

status code

	
efi_status_t efi_driver_init(void)

	initialize the EFI drivers

Parameters

	void

	no arguments

Description

Called by efi_init_obj_list().

Return

0 = success, any other value will stop further execution

	
int efi_uc_init(struct uclass * class)

	initialize the EFI uclass

Parameters

	struct uclass * class

	the EFI uclass

Return

0 = success

	
int efi_uc_destroy(struct uclass * class)

	destroy the EFI uclass

Parameters

	struct uclass * class

	the EFI uclass

Return

0 = success

Block device driver

	
ulong efi_bl_read(struct udevice * dev, lbaint_t blknr, lbaint_t blkcnt, void * buffer)

	

Parameters

	struct udevice * dev

	device

	lbaint_t blknr

	first block to be read

	lbaint_t blkcnt

	number of blocks to read

	void * buffer

	output buffer

Return

number of blocks transferred

	
ulong efi_bl_write(struct udevice * dev, lbaint_t blknr, lbaint_t blkcnt, const void * buffer)

	

Parameters

	struct udevice * dev

	device

	lbaint_t blknr

	first block to be write

	lbaint_t blkcnt

	number of blocks to write

	const void * buffer

	input buffer

Return

number of blocks transferred

	
int efi_bl_bind_partitions(efi_handle_t handle, struct udevice * dev)

	

Parameters

	efi_handle_t handle

	EFI handle of the block device

	struct udevice * dev

	udevice of the block device

Return

number of partitions created

	
int efi_bl_bind(efi_handle_t handle, void * interface)

	

Parameters

	efi_handle_t handle

	handle

	void * interface

	block io protocol

Return

0 = success

Protocols

Block IO protocol

	
struct efi_disk_obj

	EFI disk object

Definition

struct efi_disk_obj {
 struct efi_object header;
 struct efi_block_io ops;
 const char *ifname;
 int dev_index;
 struct efi_block_io_media media;
 struct efi_device_path *dp;
 unsigned int part;
 struct efi_simple_file_system_protocol *volume;
 lbaint_t offset;
 struct blk_desc *desc;
};

Members

	header

	EFI object header

	ops

	EFI disk I/O protocol interface

	ifname

	interface name for block device

	dev_index

	device index of block device

	media

	block I/O media information

	dp

	device path to the block device

	part

	partition

	volume

	simple file system protocol of the partition

	offset

	offset into disk for simple partition

	desc

	internal block device descriptor

	
efi_status_t EFIAPI efi_disk_reset(struct efi_block_io * this, char extended_verification)

	reset block device

Parameters

	struct efi_block_io * this

	pointer to the BLOCK_IO_PROTOCOL

	char extended_verification

	extended verification

Description

This function implements the Reset service of the EFI_BLOCK_IO_PROTOCOL.

As U-Boot’s block devices do not have a reset function simply return
EFI_SUCCESS.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
struct efi_simple_file_system_protocol * efi_fs_from_path(struct efi_device_path * full_path)

	retrieve simple file system protocol

Parameters

	struct efi_device_path * full_path

	device path including device and file

Description

Gets the simple file system protocol for a file device path.

The full path provided is split into device part and into a file
part. The device part is used to find the handle on which the
simple file system protocol is installed.

Return

simple file system protocol

	
int efi_fs_exists(struct blk_desc * desc, int part)

	check if a partition bears a file system

Parameters

	struct blk_desc * desc

	block device descriptor

	int part

	partition number

Return

	1 if a file system exists on the partition

	0 otherwise

	
int efi_disk_create_partitions(efi_handle_t parent, struct blk_desc * desc, const char * if_typename, int diskid, const char * pdevname)

	create handles and protocols for partitions

Parameters

	efi_handle_t parent

	handle of the parent disk

	struct blk_desc * desc

	undescribed

	const char * if_typename

	interface type

	int diskid

	device number

	const char * pdevname

	device name

Description

Create handles and protocols for the partitions of a block device.

Return

number of partitions created

	
efi_status_t efi_disk_register(void)

	register block devices

Parameters

	void

	no arguments

Description

U-Boot doesn’t have a list of all online disk devices. So when running our
EFI payload, we scan through all of the potentially available ones and
store them in our object pool.

This function is called in efi_init_obj_list().

TODO(sjg**chromium.org**): Actually with CONFIG_BLK, U-Boot does have this.
Consider converting the code to look up devices as needed. The EFI device
could be a child of the UCLASS_BLK block device, perhaps.

Return

status code

File protocol

	
int is_dir(struct file_handle * fh)

	check if file handle points to directory

Parameters

	struct file_handle * fh

	file handle

Description

We assume that set_blk_dev(fh) has been called already.

Return

true if file handle points to a directory

	
int efi_create_file(struct file_handle * fh, u64 attributes)

	create file or directory

Parameters

	struct file_handle * fh

	file handle

	u64 attributes

	attributes for newly created file

Return

0 for success

	
struct efi_file_handle * file_open(struct file_system * fs, struct file_handle * parent, u16 * file_name, u64 open_mode, u64 attributes)

	open a file handle

Parameters

	struct file_system * fs

	file system

	struct file_handle * parent

	directory relative to which the file is to be opened

	u16 * file_name

	path of the file to be opened. ‘’, ‘.’, or ‘..’ may
be used as modifiers. A leading backslash indicates an
absolute path.

	u64 open_mode

	bit mask indicating the access mode (read, write,
create)

	u64 attributes

	attributes for newly created file

Return

handle to the opened file or NULL

	
efi_status_t efi_get_file_size(struct file_handle * fh, loff_t * file_size)

	determine the size of a file

Parameters

	struct file_handle * fh

	file handle

	loff_t * file_size

	pointer to receive file size

Return

status code

	
efi_status_t EFIAPI efi_file_write(struct efi_file_handle * file, efi_uintn_t * buffer_size, void * buffer)

	write to file

Parameters

	struct efi_file_handle * file

	file handle

	efi_uintn_t * buffer_size

	number of bytes to write

	void * buffer

	buffer with the bytes to write

Description

This function implements the Write() service of the EFI_FILE_PROTOCOL.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

	
efi_status_t EFIAPI efi_file_getpos(struct efi_file_handle * file, u64 * pos)

	get current position in file

Parameters

	struct efi_file_handle * file

	file handle

	u64 * pos

	pointer to file position

Description

This function implements the GetPosition service of the EFI file protocol.
See the UEFI spec for details.

Return

status code

	
efi_status_t EFIAPI efi_file_setpos(struct efi_file_handle * file, u64 pos)

	set current position in file

Parameters

	struct efi_file_handle * file

	file handle

	u64 pos

	new file position

Description

This function implements the SetPosition service of the EFI file protocol.
See the UEFI spec for details.

Return

status code

	
struct efi_file_handle * efi_file_from_path(struct efi_device_path * fp)

	open file via device path

Parameters

	struct efi_device_path * fp

	device path

Return

EFI_FILE_PROTOCOL for the file or NULL

Graphical output protocol

	
struct efi_gop_obj

	graphical output protocol object

Definition

struct efi_gop_obj {
 struct efi_object header;
 struct efi_gop ops;
 struct efi_gop_mode_info info;
 struct efi_gop_mode mode;
 u32 bpix;
 void *fb;
};

Members

	header

	EFI object header

	ops

	graphical output protocol interface

	info

	graphical output mode information

	mode

	graphical output mode

	bpix

	bits per pixel

	fb

	frame buffer

	
efi_status_t EFIAPI gop_set_mode(struct efi_gop * this, u32 mode_number)

	set graphical output mode

Parameters

	struct efi_gop * this

	the graphical output protocol

	u32 mode_number

	the mode to be set

Description

This function implements the SetMode() service.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

status code

Load file 2 protocol

The load file 2 protocol can be used by the Linux kernel to load the initial
RAM disk. U-Boot can be configured to provide an implementation.

	
loff_t get_file_size(const char * dev, const char * part, const char * file, efi_status_t * status)

	retrieve the size of initramfs, set efi status on error

Parameters

	const char * dev

	device to read from. i.e “mmc”

	const char * part

	device partition. i.e “0:1”

	const char * file

	name fo file

	efi_status_t * status

	EFI exit code in case of failure

Return

size of file

	
efi_status_t EFIAPI efi_load_file2_initrd(struct efi_load_file_protocol * this, struct efi_device_path * file_path, bool boot_policy, efi_uintn_t * buffer_size, void * buffer)

	get information about random number generation

Parameters

	struct efi_load_file_protocol * this

	loadfile2 protocol instance

	struct efi_device_path * file_path

	relative path of the file. “” in this case

	bool boot_policy

	must be false for Loadfile2

	efi_uintn_t * buffer_size

	size of allocated buffer

	void * buffer

	buffer to load the file

Description

This function implement the LoadFile2() service in order to load an initram
disk requested by the Linux kernel stub.
See the UEFI spec for details.

Return

status code

	
efi_status_t efi_initrd_register(void)

	Register a handle and loadfile2 protocol

Parameters

	void

	no arguments

Description

This function creates a new handle and installs a linux specific GUID
to handle initram disk loading during boot.
See the UEFI spec for details.

Return

status code

Network protocols

	
struct efi_net_obj

	EFI object representing a network interface

Definition

struct efi_net_obj {
 struct efi_object header;
 struct efi_simple_network net;
 struct efi_simple_network_mode net_mode;
 struct efi_pxe_base_code_protocol pxe;
 struct efi_pxe_mode pxe_mode;
};

Members

	header

	EFI object header

	net

	simple network protocol interface

	net_mode

	status of the network interface

	pxe

	PXE base code protocol interface

	pxe_mode

	status of the PXE base code protocol

	
efi_status_t EFIAPI efi_net_nvdata(struct efi_simple_network * this, int read_write, ulong offset, ulong buffer_size, char * buffer)

	read or write NVRAM

Parameters

	struct efi_simple_network * this

	the instance of the Simple Network Protocol

	int read_write

	true for read, false for write

	ulong offset

	offset in NVRAM

	ulong buffer_size

	size of buffer

	char * buffer

	buffer

Description

This function implements the GetStatus service of the Simple Network
Protocol. See the UEFI spec for details.

Return

status code

	
efi_status_t EFIAPI efi_net_get_status(struct efi_simple_network * this, u32 * int_status, void ** txbuf)

	get interrupt status

Parameters

	struct efi_simple_network * this

	the instance of the Simple Network Protocol

	u32 * int_status

	interface status

	void ** txbuf

	transmission buffer

Description

This function implements the GetStatus service of the Simple Network
Protocol. See the UEFI spec for details.

	
efi_status_t EFIAPI efi_net_transmit(struct efi_simple_network * this, size_t header_size, size_t buffer_size, void * buffer, struct efi_mac_address * src_addr, struct efi_mac_address * dest_addr, u16 * protocol)

	transmit a packet

Parameters

	struct efi_simple_network * this

	the instance of the Simple Network Protocol

	size_t header_size

	size of the media header

	size_t buffer_size

	size of the buffer to receive the packet

	void * buffer

	buffer to receive the packet

	struct efi_mac_address * src_addr

	source hardware MAC address

	struct efi_mac_address * dest_addr

	destination hardware MAC address

	u16 * protocol

	type of header to build

Description

This function implements the Transmit service of the Simple Network Protocol.
See the UEFI spec for details.

Return

status code

	
efi_status_t EFIAPI efi_net_receive(struct efi_simple_network * this, size_t * header_size, size_t * buffer_size, void * buffer, struct efi_mac_address * src_addr, struct efi_mac_address * dest_addr, u16 * protocol)

	receive a packet from a network interface

Parameters

	struct efi_simple_network * this

	the instance of the Simple Network Protocol

	size_t * header_size

	size of the media header

	size_t * buffer_size

	size of the buffer to receive the packet

	void * buffer

	buffer to receive the packet

	struct efi_mac_address * src_addr

	source MAC address

	struct efi_mac_address * dest_addr

	destination MAC address

	u16 * protocol

	protocol

Description

This function implements the Receive service of the Simple Network Protocol.
See the UEFI spec for details.

Return

status code

	
void efi_net_set_dhcp_ack(void * pkt, int len)

	take note of a selected DHCP IP address

Parameters

	void * pkt

	packet received by dhcp_handler()

	int len

	length of the packet received

Description

This function is called by dhcp_handler().

	
void efi_net_push(void * pkt, int len)

	callback for received network packet

Parameters

	void * pkt

	network packet

	int len

	length

Description

This function is called when a network packet is received by eth_rx().

	
void EFIAPI efi_network_timer_notify(struct efi_event * event, void * context)

	check if a new network packet has been received

Parameters

	struct efi_event * event

	the event for which this notification function is registered

	void * context

	event context - not used in this function

Description

This notification function is called in every timer cycle.

	
efi_status_t efi_net_register(void)

	register the simple network protocol

Parameters

	void

	no arguments

Description

This gets called from do_bootefi_exec().

Random number generator protocol

	
efi_status_t platform_get_rng_device(struct udevice ** dev)

	retrieve random number generator

Parameters

	struct udevice ** dev

	udevice

Description

This function retrieves the udevice implementing a hardware random
number generator.

This function may be overridden if special initialization is needed.

Return

status code

	
efi_status_t EFIAPI rng_getinfo(struct efi_rng_protocol * this, efi_uintn_t * rng_algorithm_list_size, efi_guid_t * rng_algorithm_list)

	get information about random number generation

Parameters

	struct efi_rng_protocol * this

	random number generator protocol instance

	efi_uintn_t * rng_algorithm_list_size

	number of random number generation algorithms

	efi_guid_t * rng_algorithm_list

	descriptions of random number generation
algorithms

Description

This function implement the GetInfo() service of the EFI random number
generator protocol. See the UEFI spec for details.

Return

status code

	
efi_status_t EFIAPI getrng(struct efi_rng_protocol * this, efi_guid_t * rng_algorithm, efi_uintn_t rng_value_length, uint8_t * rng_value)

	get random value

Parameters

	struct efi_rng_protocol * this

	random number generator protocol instance

	efi_guid_t * rng_algorithm

	random number generation algorithm

	efi_uintn_t rng_value_length

	number of random bytes to generate, buffer length

	uint8_t * rng_value

	buffer to receive random bytes

Description

This function implement the GetRng() service of the EFI random number
generator protocol. See the UEFI spec for details.

Return

status code

Text IO protocols

	
int query_console_serial(int * rows, int * cols)

	query console size

Parameters

	int * rows

	pointer to return number of rows

	int * cols

	pointer to return number of columns

Return

0 on success

	
efi_status_t EFIAPI efi_cout_clear_screen(struct efi_simple_text_output_protocol * this)

	clear screen

Parameters

	struct efi_simple_text_output_protocol * this

	pointer to the protocol instance

Description

This function implements the ClearScreen service of the
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL. See the Unified Extensible Firmware
Interface (UEFI) specification for details.

Return

status code

	
struct efi_cin_notify_function

	registered console input notify function

Definition

struct efi_cin_notify_function {
 struct list_head link;
 struct efi_key_data key;
 efi_status_t (EFIAPI *function) (struct efi_key_data *key_data);
};

Members

	link

	link to list

	key

	key to notify

	function

	function to call

	
void set_shift_mask(int mod, struct efi_key_state * key_state)

	set shift mask

Parameters

	int mod

	Xterm shift mask

	struct efi_key_state * key_state

	receives the state of the shift, alt, control, and logo keys

	
int analyze_modifiers(struct efi_key_state * key_state)

	analyze modifiers (shift, alt, ctrl) for function keys

Parameters

	struct efi_key_state * key_state

	receives the state of the shift, alt, control, and logo keys

Description

This gets called when we have already parsed CSI.

Return

the unmodified code

	
efi_status_t efi_cin_read_key(struct efi_key_data * key)

	read a key from the console input

Parameters

	struct efi_key_data * key

	
	key received

Return

	status code

	
void efi_cin_notify(void)

	notify registered functions

Parameters

	void

	no arguments

	
void efi_cin_check(void)

	check if keyboard input is available

Parameters

	void

	no arguments

	
void efi_cin_empty_buffer(void)

	empty input buffer

Parameters

	void

	no arguments

	
efi_status_t EFIAPI efi_cin_reset_ex(struct efi_simple_text_input_ex_protocol * this, bool extended_verification)

	reset console input

Parameters

	struct efi_simple_text_input_ex_protocol * this

	
	the extended simple text input protocol

	bool extended_verification

	
	extended verification

Description

This function implements the reset service of the
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

Return

old value of the task priority level

	
efi_status_t EFIAPI efi_cin_read_key_stroke_ex(struct efi_simple_text_input_ex_protocol * this, struct efi_key_data * key_data)

	read key stroke

Parameters

	struct efi_simple_text_input_ex_protocol * this

	instance of the EFI_SIMPLE_TEXT_INPUT_PROTOCOL

	struct efi_key_data * key_data

	key read from console

Return

status code

This function implements the ReadKeyStrokeEx service of the
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

	
efi_status_t EFIAPI efi_cin_set_state(struct efi_simple_text_input_ex_protocol * this, u8 * key_toggle_state)

	set toggle key state

Parameters

	struct efi_simple_text_input_ex_protocol * this

	instance of the EFI_SIMPLE_TEXT_INPUT_PROTOCOL

	u8 * key_toggle_state

	pointer to key toggle state

Return

status code

This function implements the SetState service of the
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

	
efi_status_t EFIAPI efi_cin_register_key_notify(struct efi_simple_text_input_ex_protocol * this, struct efi_key_data * key_data, efi_status_t (EFIAPI *key_notify_function)(struct efi_key_data *key_data) key_notify_function, void ** notify_handle)

	register key notification function

Parameters

	struct efi_simple_text_input_ex_protocol * this

	instance of the EFI_SIMPLE_TEXT_INPUT_PROTOCOL

	struct efi_key_data * key_data

	key to be notified

	efi_status_t (EFIAPI *key_notify_function)(struct efi_key_data *key_data) key_notify_function

	function to be called if the key is pressed

	void ** notify_handle

	handle for unregistering the notification

Return

status code

This function implements the SetState service of the
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

	
efi_status_t EFIAPI efi_cin_unregister_key_notify(struct efi_simple_text_input_ex_protocol * this, void * notification_handle)

	unregister key notification function

Parameters

	struct efi_simple_text_input_ex_protocol * this

	instance of the EFI_SIMPLE_TEXT_INPUT_PROTOCOL

	void * notification_handle

	handle received when registering

Return

status code

This function implements the SetState service of the
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

	
efi_status_t EFIAPI efi_cin_reset(struct efi_simple_text_input_protocol * this, bool extended_verification)

	drain the input buffer

Parameters

	struct efi_simple_text_input_protocol * this

	instance of the EFI_SIMPLE_TEXT_INPUT_PROTOCOL

	bool extended_verification

	allow for exhaustive verification

Return

status code

This function implements the Reset service of the
EFI_SIMPLE_TEXT_INPUT_PROTOCOL.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

	
efi_status_t EFIAPI efi_cin_read_key_stroke(struct efi_simple_text_input_protocol * this, struct efi_input_key * key)

	read key stroke

Parameters

	struct efi_simple_text_input_protocol * this

	instance of the EFI_SIMPLE_TEXT_INPUT_PROTOCOL

	struct efi_input_key * key

	key read from console

Return

status code

This function implements the ReadKeyStroke service of the
EFI_SIMPLE_TEXT_INPUT_PROTOCOL.

See the Unified Extensible Firmware Interface (UEFI) specification for
details.

	
void EFIAPI efi_key_notify(struct efi_event * event, void * context)

	notify the wait for key event

Parameters

	struct efi_event * event

	wait for key event

	void * context

	not used

	
efi_status_t efi_console_register(void)

	install the console protocols

Parameters

	void

	no arguments

Description

This function is called from do_bootefi_exec().

Return

status code

Linker-Generated Arrays

A linker list is constructed by grouping together linker input
sections, each containing one entry of the list. Each input section
contains a constant initialized variable which holds the entry’s
content. Linker list input sections are constructed from the list
and entry names, plus a prefix which allows grouping all lists
together. Assuming _list and _entry are the list and entry names,
then the corresponding input section name is

.u_boot_list_ + 2_ + @_list + _2_ + @_entry

and the C variable name is

_u_boot_list + _2_ + @_list + _2_ + @_entry

This ensures uniqueness for both input section and C variable name.

Note that the names differ only in the first character, “.” for the
section and “_” for the variable, so that the linker cannot confuse
section and symbol names. From now on, both names will be referred
to as

%u_boot_list_ + 2_ + @_list + _2_ + @_entry

Entry variables need never be referred to directly.

The naming scheme for input sections allows grouping all linker lists
into a single linker output section and grouping all entries for a
single list.

Note the two ‘_2_’ constant components in the names: their presence
allows putting a start and end symbols around a list, by mapping
these symbols to sections names with components “1” (before) and
“3” (after) instead of “2” (within).
Start and end symbols for a list can generally be defined as

%u_boot_list_2_ + @_list + _1_...
%u_boot_list_2_ + @_list + _3_...

Start and end symbols for the whole of the linker lists area can be
defined as

%u_boot_list_1_...
%u_boot_list_3_...

Here is an example of the sorted sections which result from a list
“array” made up of three entries : “first”, “second” and “third”,
iterated at least once.

.u_boot_list_2_array_1
.u_boot_list_2_array_2_first
.u_boot_list_2_array_2_second
.u_boot_list_2_array_2_third
.u_boot_list_2_array_3

If lists must be divided into sublists (e.g. for iterating only on
part of a list), one can simply give the list a name of the form
‘outer_2_inner’, where ‘outer’ is the global list name and ‘inner’
is the sub-list name. Iterators for the whole list should use the
global list name (“outer”); iterators for only a sub-list should use
the full sub-list name (“outer_2_inner”).

Here is an example of the sections generated from a global list
named “drivers”, two sub-lists named “i2c” and “pci”, and iterators
defined for the whole list and each sub-list:

%u_boot_list_2_drivers_1
%u_boot_list_2_drivers_2_i2c_1
%u_boot_list_2_drivers_2_i2c_2_first
%u_boot_list_2_drivers_2_i2c_2_first
%u_boot_list_2_drivers_2_i2c_2_second
%u_boot_list_2_drivers_2_i2c_2_third
%u_boot_list_2_drivers_2_i2c_3
%u_boot_list_2_drivers_2_pci_1
%u_boot_list_2_drivers_2_pci_2_first
%u_boot_list_2_drivers_2_pci_2_second
%u_boot_list_2_drivers_2_pci_2_third
%u_boot_list_2_drivers_2_pci_3
%u_boot_list_2_drivers_3

	
llsym(_type, _name, _list)

	Access a linker-generated array entry

Parameters

	_type

	Data type of the entry

	_name

	Name of the entry

	_list

	name of the list. Should contain only characters allowed
in a C variable name!

	
ll_entry_declare(_type, _name, _list)

	Declare linker-generated array entry

Parameters

	_type

	Data type of the entry

	_name

	Name of the entry

	_list

	name of the list. Should contain only characters allowed
in a C variable name!

Description

This macro declares a variable that is placed into a linker-generated
array. This is a basic building block for more advanced use of linker-
generated arrays. The user is expected to build their own macro wrapper
around this one.

A variable declared using this macro must be compile-time initialized.

Special precaution must be made when using this macro:

	The _type must not contain the “static” keyword, otherwise the
entry is generated and can be iterated but is listed in the map
file and cannot be retrieved by name.

	In case a section is declared that contains some array elements AND
a subsection of this section is declared and contains some elements,
it is imperative that the elements are of the same type.

	In case an outer section is declared that contains some array elements
AND an inner subsection of this section is declared and contains some
elements, then when traversing the outer section, even the elements of
the inner sections are present in the array.

Example

ll_entry_declare(struct my_sub_cmd, my_sub_cmd, cmd_sub) = {
 .x = 3,
 .y = 4,
};

	
ll_entry_declare_list(_type, _name, _list)

	Declare a list of link-generated array entries

Parameters

	_type

	Data type of each entry

	_name

	Name of the entry

	_list

	name of the list. Should contain only characters allowed
in a C variable name!

Description

This is like ll_entry_declare() but creates multiple entries. It should
be assigned to an array.

ll_entry_declare_list(struct my_sub_cmd, my_sub_cmd, cmd_sub) = {
 { .x = 3, .y = 4 },
 { .x = 8, .y = 2 },
 { .x = 1, .y = 7 }
};

	
ll_entry_start(_type, _list)

	Point to first entry of linker-generated array

Parameters

	_type

	Data type of the entry

	_list

	Name of the list in which this entry is placed

Description

This function returns (_type *) pointer to the very first entry of a
linker-generated array placed into subsection of .u_boot_list section
specified by _list argument.

Since this macro defines an array start symbol, its leftmost index
must be 2 and its rightmost index must be 1.

Example

struct my_sub_cmd *msc = ll_entry_start(struct my_sub_cmd, cmd_sub);

	
ll_entry_end(_type, _list)

	Point after last entry of linker-generated array

Parameters

	_type

	Data type of the entry

	_list

	Name of the list in which this entry is placed
(with underscores instead of dots)

Description

This function returns (_type *) pointer after the very last entry of
a linker-generated array placed into subsection of .u_boot_list
section specified by _list argument.

Since this macro defines an array end symbol, its leftmost index
must be 2 and its rightmost index must be 3.

Example

struct my_sub_cmd *msc = ll_entry_end(struct my_sub_cmd, cmd_sub);

	
ll_entry_count(_type, _list)

	Return the number of elements in linker-generated array

Parameters

	_type

	Data type of the entry

	_list

	Name of the list of which the number of elements is computed

Description

This function returns the number of elements of a linker-generated array
placed into subsection of .u_boot_list section specified by _list
argument. The result is of an unsigned int type.

Example

int i;
const unsigned int count = ll_entry_count(struct my_sub_cmd, cmd_sub);
struct my_sub_cmd *msc = ll_entry_start(struct my_sub_cmd, cmd_sub);
for (i = 0; i < count; i++, msc++)
 printf("Entry ``i``, x=``i`` y=``i``\n", i, msc->x, msc->y);

	
ll_entry_get(_type, _name, _list)

	Retrieve entry from linker-generated array by name

Parameters

	_type

	Data type of the entry

	_name

	Name of the entry

	_list

	Name of the list in which this entry is placed

Description

This function returns a pointer to a particular entry in linker-generated
array identified by the subsection of u_boot_list where the entry resides
and it’s name.

Example

ll_entry_declare(struct my_sub_cmd, my_sub_cmd, cmd_sub) = {
 .x = 3,
 .y = 4,
};
...
struct my_sub_cmd *c = ll_entry_get(struct my_sub_cmd, my_sub_cmd, cmd_sub);

	
ll_start(_type)

	Point to first entry of first linker-generated array

Parameters

	_type

	Data type of the entry

Description

This function returns (_type *) pointer to the very first entry of
the very first linker-generated array.

Since this macro defines the start of the linker-generated arrays,
its leftmost index must be 1.

Example

struct my_sub_cmd *msc = ll_start(struct my_sub_cmd);

	
ll_end(_type)

	Point after last entry of last linker-generated array

Parameters

	_type

	Data type of the entry

Description

This function returns (_type *) pointer after the very last entry of
the very last linker-generated array.

Since this macro defines the end of the linker-generated arrays,
its leftmost index must be 3.

Example

struct my_sub_cmd *msc = ll_end(struct my_sub_cmd);

Serial system

	
void serial_null(void)

	Void registration routine of a serial driver

Parameters

	void

	no arguments

Description

This routine implements a void registration routine of a serial
driver. The registration routine of a particular driver is aliased
to this empty function in case the driver is not compiled into
U-Boot.

	
int on_baudrate(const char * name, const char * value, enum env_op op, int flags)

	Update the actual baudrate when the env var changes

Parameters

	const char * name

	changed environment variable

	const char * value

	new value of the environment variable

	enum env_op op

	operation (create, overwrite, or delete)

	int flags

	attributes of environment variable change,
see flags H_* in include/search.h

Description

This will check for a valid baudrate and only apply it if valid.

Return

0 on success, 1 on error

	
serial_initfunc(name)

	Forward declare of driver registration routine

Parameters

	name

	Name of the real driver registration routine.

Description

This macro expands onto forward declaration of a driver registration
routine, which is then used below in serial_initialize() function.
The declaration is made weak and aliases to serial_null() so in case
the driver is not compiled in, the function is still declared and can
be used, but aliases to serial_null() and thus is optimized away.

	
void serial_register(struct serial_device * dev)

	Register serial driver with serial driver core

Parameters

	struct serial_device * dev

	Pointer to the serial driver structure

Description

This function registers the serial driver supplied via dev with
serial driver core, thus making U-Boot aware of it and making it
available for U-Boot to use. On platforms that still require manual
relocation of constant variables, relocation of the supplied structure
is performed.

	
void serial_initialize(void)

	Register all compiled-in serial port drivers

Parameters

	void

	no arguments

Description

This function registers all serial port drivers that are compiled
into the U-Boot binary with the serial core, thus making them
available to U-Boot to use. Lastly, this function assigns a default
serial port to the serial core. That serial port is then used as a
default output.

	
void serial_stdio_init(void)

	Register serial ports with STDIO core

Parameters

	void

	no arguments

Description

This function generates a proxy driver for each serial port driver.
These proxy drivers then register with the STDIO core, making the
serial drivers available as STDIO devices.

	
int serial_assign(const char * name)

	Select the serial output device by name

Parameters

	const char * name

	Name of the serial driver to be used as default output

Description

This function configures the serial output multiplexing by
selecting which serial device will be used as default. In case
the STDIO “serial” device is selected as stdin/stdout/stderr,
the serial device previously configured by this function will be
used for the particular operation.

Returns 0 on success, negative on error.

	
void serial_reinit_all(void)

	Reinitialize all compiled-in serial ports

Parameters

	void

	no arguments

Description

This function reinitializes all serial ports that are compiled
into U-Boot by calling their serial_start() functions.

	
struct serial_device * get_current(void)

	Return pointer to currently selected serial port

Parameters

	void

	no arguments

Description

This function returns a pointer to currently selected serial port.
The currently selected serial port is altered by serial_assign()
function.

In case this function is called before relocation or before any serial
port is configured, this function calls default_serial_console() to
determine the serial port. Otherwise, the configured serial port is
returned.

Returns pointer to the currently selected serial port on success,
NULL on error.

	
int serial_init(void)

	Initialize currently selected serial port

Parameters

	void

	no arguments

Description

This function initializes the currently selected serial port. This
usually involves setting up the registers of that particular port,
enabling clock and such. This function uses the get_current() call
to determine which port is selected.

Returns 0 on success, negative on error.

	
void serial_setbrg(void)

	Configure baud-rate of currently selected serial port

Parameters

	void

	no arguments

Description

This function configures the baud-rate of the currently selected
serial port. The baud-rate is retrieved from global data within
the serial port driver. This function uses the get_current() call
to determine which port is selected.

Returns 0 on success, negative on error.

	
int serial_getc(void)

	Read character from currently selected serial port

Parameters

	void

	no arguments

Description

This function retrieves a character from currently selected serial
port. In case there is no character waiting on the serial port,
this function will block and wait for the character to appear. This
function uses the get_current() call to determine which port is
selected.

Returns the character on success, negative on error.

	
int serial_tstc(void)

	Test if data is available on currently selected serial port

Parameters

	void

	no arguments

Description

This function tests if one or more characters are available on
currently selected serial port. This function never blocks. This
function uses the get_current() call to determine which port is
selected.

Returns positive if character is available, zero otherwise.

	
void serial_putc(const char c)

	Output character via currently selected serial port

Parameters

	const char c

	Single character to be output from the serial port.

Description

This function outputs a character via currently selected serial
port. This character is passed to the serial port driver responsible
for controlling the hardware. The hardware may still be in process
of transmitting another character, therefore this function may block
for a short amount of time. This function uses the get_current()
call to determine which port is selected.

	
void serial_puts(const char * s)

	Output string via currently selected serial port

Parameters

	const char * s

	Zero-terminated string to be output from the serial port.

Description

This function outputs a zero-terminated string via currently
selected serial port. This function behaves as an accelerator
in case the hardware can queue multiple characters for transfer.
The whole string that is to be output is available to the function
implementing the hardware manipulation. Transmitting the whole
string may take some time, thus this function may block for some
amount of time. This function uses the get_current() call to
determine which port is selected.

	
void default_serial_puts(const char * s)

	Output string by calling serial_putc() in loop

Parameters

	const char * s

	Zero-terminated string to be output from the serial port.

Description

This function outputs a zero-terminated string by calling serial_putc()
in a loop. Most drivers do not support queueing more than one byte for
transfer, thus this function precisely implements their serial_puts().

To optimize the number of get_current() calls, this function only
calls get_current() once and then directly accesses the putc() call
of the struct serial_device .

	
int uart_post_test(int flags)

	Test the currently selected serial port using POST

Parameters

	int flags

	POST framework flags

Description

Do a loopback test of the currently selected serial port. This
function is only useful in the context of the POST testing framwork.
The serial port is first configured into loopback mode and then
characters are sent through it.

Returns 0 on success, value otherwise.

Architecture-specific doc

	ARC

	ARM64
	Summary

	Notes

	Contributors

	M68K / ColdFire
	History

	Overview

	Supported CPU families

	Supported boards

	Adopted toolchains

	ColdFire specific configuration options/settings

	MIPS
	Toolchains

	Known Issues

	TODOs

	NDS32
	AndeStar ISA

	AndesCore CPU

	Nios II

	Sandbox
	Native Execution of U-Boot

	Basic Operation

	Console / LCD support

	Command-line Options

	Memory Emulation

	Storing State

	Running and Booting

	Supported Drivers

	Sandbox Variants

	Linux RAW Networking Bridge

	SPI Emulation

	Block Device Emulation

	Writing Sandbox Drivers

	Debugging the init sequence

	SDL_CONFIG

	Using valgrind / memcheck

	Testing

	Memory Map

	SuperH
	What’s this?

	Overview

	Supported CPUs

	Supported Boards

	Compiler

	Future

	x86
	Status

	Build Instructions for U-Boot as BIOS replacement (bare mode)

	CPU Microcode

	SMP Support

	Driver Model

	Device Tree

	Useful Commands

	Booting Ubuntu

	Test with SeaBIOS

	Development Flow

	Porting Hints

	ACPI Support Status

	EFI Support

	TODO List

	Xtensa
	Xtensa Architecture and Diamond Cores

	Adding support for an additional processor configuration

	Global Data Pointer, Exported Function Stubs, and the ABI

	Access to Invalid Memory Addresses

ARC

Synopsys’ DesignWare(r) ARC(r) Processors are a family of 32-bit CPUs
that SoC designers can optimize for a wide range of uses, from deeply embedded
to high-performance host applications.

More information on ARC cores avaialble here:
http://www.synopsys.com/IP/ProcessorIP/ARCProcessors/Pages/default.aspx

Designers can differentiate their products by using patented configuration
technology to tailor each ARC processor instance to meet specific performance,
power and area requirements.

The DesignWare ARC processors are also extendable, allowing designers to add
their own custom instructions that dramatically increase performance.

Synopsys’ ARC processors have been used by over 170 customers worldwide who
collectively ship more than 1 billion ARC-based chips annually.

All DesignWare ARC processors utilize a 16-/32-bit ISA that provides excellent
performance and code density for embedded and host SoC applications.

The RISC microprocessors are synthesizable and can be implemented in any foundry
or process, and are supported by a complete suite of development tools.

The ARC GNU toolchain with support for all ARC Processors can be downloaded
from here (available pre-built toolchains as well):

https://github.com/foss-for-synopsys-dwc-arc-processors/toolchain/releases

ARM64

Summary

The initial arm64 U-Boot port was developed before hardware was available,
so the first supported platforms were the Foundation and Fast Model for ARMv8.
These days U-Boot runs on a variety of 64-bit capable ARM hardware, from
embedded development boards to servers.

Notes

	U-Boot can run at any exception level it is entered in, it is
recommened to enter it in EL3 if U-Boot takes some responsibilities of a
classical firmware (like initial hardware setup, CPU errata workarounds
or SMP bringup). U-Boot can be entered in EL2 when its main purpose is
that of a boot loader. It can drop to lower exception levels before
entering the OS.

	U-Boot for arm64 is compiled with AArch64-gcc. AArch64-gcc
use rela relocation format, a tool(tools/relocate-rela) by Scott Wood
is used to encode the initial addend of rela to u-boot.bin. After running,
the U-Boot will be relocated to destination again.

	Earlier Linux kernel versions required the FDT to be placed at a
2 MB boundary and within the same 512 MB section as the kernel image,
resulting in fdt_high to be defined specially.
Since kernel version 4.2 Linux is more relaxed about the DT location, so it
can be placed anywhere in memory.
Please reference linux/Documentation/arm64/booting.txt for detail.

	Spin-table is used to wake up secondary processors. One location
(or per processor location) is defined to hold the kernel entry point
for secondary processors. It must be ensured that the location is
accessible and zero immediately after secondary processor
enter slave_cpu branch execution in start.S. The location address
is encoded in cpu node of DTS. Linux kernel store the entry point
of secondary processors to it and send event to wakeup secondary
processors.
Please reference linux/Documentation/arm64/booting.txt for detail.

	Generic board is supported.

	CONFIG_ARM64 instead of CONFIG_ARMV8 is used to distinguish aarch64 and
aarch32 specific codes.

Contributors

	Tom Rini <trini@ti.com>

	Scott Wood <scottwood@freescale.com>

	York Sun <yorksun@freescale.com>

	Simon Glass <sjg@chromium.org>

	Sharma Bhupesh <bhupesh.sharma@freescale.com>

	Rob Herring <robherring2@gmail.com>

	Sergey Temerkhanov <s.temerkhanov@gmail.com>

M68K / ColdFire

History

	November 02, 2017 Angelo Dureghello <angelo@sysam.it>

	August 08, 2005 Jens Scharsig <esw@bus-elektronik.de>
MCF5282 implementation without preloader

	January 12, 2004 <josef.baumgartner@telex.de>

This file contains status information for the port of U-Boot to the
Motorola ColdFire series of CPUs.

Overview

The ColdFire instruction set is “assembly source” compatible but an evolution
of the original 68000 instruction set. Some not much used instructions has
been removed. The instructions are only 16, 32, or 48 bits long, a
simplification compared to the 68000 series.

Bernhard Kuhn ported U-Boot 0.4.0 to the Motorola ColdFire architecture.
The patches of Bernhard support the MCF5272 and MCF5282. A great disadvantage
of these patches was that they needed a pre-bootloader to start U-Boot.
Because of this, a new port was created which no longer needs a first stage
booter.

Thanks mainly to Freescale but also to several other contributors, U-Boot now
supports nearly the entire range of ColdFire processors and their related
development boards.

Supported CPU families

Please “make menuconfig” with ARCH=m68k, or check arch/m68k/cpu to see the
currently supported processor and families.

Supported boards

U-Boot supports actually more than 40 ColdFire based boards.
Board configuration can be done trough include/configs/<boardname>.h but the
current recommended method is to use the new and more friendly approach as
the “make menuconfig” way, very similar to the Linux way.

To know details as memory map, build targets, default setup, etc, of a
specific board please check:

	include/configs/<boardname>.h

and/or

	configs/<boardname>_defconfig

It is possible to build all ColdFire boards in a single command-line command,
from u-boot root directory, as:

./tools/buildman/buildman m68k

Build U-Boot for a specific board

A bash script similar to the one below may be used:

#!/bin/bash

export CROSS_COMPILE=/opt/toolchains/m68k/gcc-4.9.0-nolibc/bin/m68k-linux-

board=M5475DFE

make distclean
make ARCH=m68k ${board}_defconfig
make ARCH=m68k KBUILD_VERBOSE=1

Adopted toolchains

Please check:
https://www.denx.de/wiki/U-Boot/ColdFireNotes

ColdFire specific configuration options/settings

Configuration to use a pre-loader

If U-Boot should be loaded to RAM and started by a pre-loader
CONFIG_MONITOR_IS_IN_RAM must be defined. If it is defined the
initial vector table and basic processor initialization will not
be compiled in. The start address of U-Boot must be adjusted in
the boards config header file (CONFIG_SYS_MONITOR_BASE) and Makefile
(CONFIG_SYS_TEXT_BASE) to the load address.

ColdFire CPU specific options/settings

To specify a CPU model, some defines shoudl be used, i.e.:

	CONFIG_MCF52x2:

	defined for all MCF52x2 CPUs

	CONFIG_M5272:

	defined for all Motorola MCF5272 CPUs

Other options, generally set inside include/configs/<boardname>.h, they may
apply to one or more cpu for the ColdFire family:

	CONFIG_SYS_MBAR:

	defines the base address of the MCF5272 configuration registers

	CONFIG_SYS_ENET_BD_BASE:

	defines the base address of the FEC buffer descriptors

	CONFIG_SYS_SCR:

	defines the contents of the System Configuration Register

	CONFIG_SYS_SPR:

	defines the contents of the System Protection Register

	CONFIG_SYS_MFD:

	defines the PLL Multiplication Factor Divider
(see table 9-4 of MCF user manual)

	CONFIG_SYS_RFD:

	defines the PLL Reduce Frequency Devider
(see table 9-4 of MCF user manual)

	CONFIG_SYS_CSx_BASE:

	defines the base address of chip select x

	CONFIG_SYS_CSx_SIZE:

	defines the memory size (address range) of chip select x

	CONFIG_SYS_CSx_WIDTH:

	defines the bus with of chip select x

	CONFIG_SYS_CSx_MASK:

	defines the mask for the related chip select x

	CONFIG_SYS_CSx_RO:

	if set to 0 chip select x is read/write else chip select is read only

	CONFIG_SYS_CSx_WS:

	defines the number of wait states of chip select x

	CONFIG_SYS_CACHE_ICACR:

	cache-related registers config

	CONFIG_SYS_CACHE_DCACR:

	cache-related registers config

	CONFIG_SYS_CACHE_ACRX:

	cache-related registers config

	CONFIG_SYS_SDRAM_BASE:

	SDRAM config for SDRAM controller-specific registers

	CONFIG_SYS_SDRAM_SIZE:

	SDRAM config for SDRAM controller-specific registers

	CONFIG_SYS_SDRAM_BASEX:

	SDRAM config for SDRAM controller-specific registers

	CONFIG_SYS_SDRAM_CFG1:

	SDRAM config for SDRAM controller-specific registers

	CONFIG_SYS_SDRAM_CFG2:

	SDRAM config for SDRAM controller-specific registers

	CONFIG_SYS_SDRAM_CTRL:

	SDRAM config for SDRAM controller-specific registers

	CONFIG_SYS_SDRAM_MODE:

	SDRAM config for SDRAM controller-specific registers

	CONFIG_SYS_SDRAM_EMOD:

	SDRAM config for SDRAM controller-specific registers, please
see arch/m68k/cpu/<specific_cpu>/start.S files to see how
these options are used.

	CONFIG_MCFUART:

	defines enabling of ColdFire UART driver

	CONFIG_SYS_UART_PORT:

	defines the UART port to be used (only a single UART can be actually enabled)

	CONFIG_SYS_SBFHDR_SIZE:

	size of the prepended SBF header, if any

MIPS

Notes for the MIPS architecture port of U-Boot

Toolchains

	ELDK < DULG < DENX [http://www.denx.de/wiki/DULG/ELDK]

	Embedded Debian – Cross-development toolchains [http://www.emdebian.org/crosstools.html]

	Buildroot [http://buildroot.uclibc.org/]

Known Issues

	Cache incoherency issue caused by do_bootelf_exec() at cmd_elf.c

Cache will be disabled before entering the loaded ELF image without
writing back and invalidating cache lines. This leads to cache
incoherency in most cases, unless the code gets loaded after U-Boot
re-initializes the cache. The more common uImage ‘bootm’ command does
not suffer this problem.

	[workaround] To avoid this cache incoherency:

	
	insert flush_cache(all) before calling dcache_disable(), or

	fix dcache_disable() to do both flushing and disabling cache.

	Note that Linux users need to kill dcache_disable() in do_bootelf_exec()
or override do_bootelf_exec() not to disable I-/D-caches, because most
Linux/MIPS ports don’t re-enable caches after entering kernel_entry.

TODOs

	Probe CPU types, I-/D-cache and TLB size etc. automatically

	Secondary cache support missing

	Initialize TLB entries redardless of their use

	R2000/R3000 class parts are not supported

	Limited testing across different MIPS variants

	Due to cache initialization issues, the DRAM on board must be
initialized in board specific assembler language before the cache init
code is run – that is, initialize the DRAM in lowlevel_init().

	centralize/share more CPU code of MIPS32, MIPS64 and XBurst

	support Qemu Malta

NDS32

NDS32 is a new high-performance 32-bit RISC microprocessor core.

http://www.andestech.com/

AndeStar ISA

AndeStar is a patent-pending 16-bit/32-bit mixed-length instruction set to
achieve optimal system performance, code density, and power efficiency.

	It contains the following features:

	
	Intermixable 32-bit and 16-bit instruction sets without the need for
mode switch.

	16-bit instructions as a frequently used subset of 32-bit instructions.

	RISC-style register-based instruction set.

	32 32-bit General Purpose Registers (GPR).

	Upto 1024 User Special Registers (USR) for existing and extension
instructions.

	
	Rich load/store instructions for…

	
	Single memory access with base address update.

	Multiple aligned and unaligned memory accesses for memory copy and stack
operations.

	Data prefetch to improve data cache performance.

	Non-bus locking synchronization instructions.

	PC relative jump and PC read instructions for efficient position independent
code.

	Multiply-add and multiple-sub with 64-bit accumulator.

	Instruction for efficient power management.

	Bi-endian support.

	
	Three instruction extension space for application acceleration:

	
	Performance extension.

	Andes future extensions (for floating-point, multimedia, etc.)

	Customer extensions.

AndesCore CPU

Andes Technology has 4 families of CPU cores: N12, N10, N9, N8.

For details about N12 CPU family, please check below N1213 features.
N1213 is a configurable hard/soft core of NDS32’s N12 CPU family.

N1213 Features

	CPU Core

	
	16-/32-bit mixable instruction format.

	32 general-purpose 32-bit registers.

	8-stage pipeline.

	Dynamic branch prediction.

	32/64/128/256 BTB.

	Return address stack (RAS).

	Vector interrupts for internal/external.
interrupt controller with 6 hardware interrupt signals.

	3 HW-level nested interruptions.

	User and super-user mode support.

	Memory-mapped I/O.

	Address space up to 4GB.

	Memory Management Unit

	
	
	TLB

	
	4/8-entry fully associative iTLB/dTLB.

	32/64/128-entry 4-way set-associati.ve main TLB.

	TLB locking support

	Optional hardware page table walker.

	
	Two groups of page size support.

	
	4KB & 1MB.

	8KB & 1MB.

	Memory Subsystem

	
	
	I & D cache.

	
	Virtually indexed and physically tagged.

	Cache size: 8KB/16KB/32KB/64KB.

	Cache line size: 16B/32B.

	Set associativity: 2-way, 4-way or direct-mapped.

	Cache locking support.

	
	I & D local memory (LM).

	
	Size: 4KB to 1MB.

	Bank numbers: 1 or 2.

	Optional 1D/2D DMA engine.

	Internal or external to CPU core.

	Bus Interface

	
	Synchronous/Asynchronous AHB bus: 0, 1 or 2 ports.

	Synchronous High speed memory port.
(HSMP): 0, 1 or 2 ports.

	Debug

	
	JTAG debug interface.

	Embedded debug module (EDM).

	Optional embedded program tracer interface.

	Miscellaneous

	
	Programmable data endian control.

	Performance monitoring mechanism.

The NDS32 ports of u-boot, the Linux kernel, the GNU toolchain and other
associated software are actively supported by Andes Technology Corporation.

Nios II

Nios II is a 32-bit embedded-processor architecture designed
specifically for the Altera family of FPGAs.

Please refer to the link for more information on Nios II:
https://www.altera.com/products/processors/overview.html

Please refer to the link for Linux port and toolchains:
http://rocketboards.org/foswiki/view/Documentation/NiosIILinuxUserManual

The Nios II port of u-boot is controlled by device tree. Please check
out doc/README.fdt-control.

To add a new board/configuration (eg, mysystem) to u-boot, you will need
three files.

	The device tree source which describes the hardware, dts file:
arch/nios2/dts/mysystem.dts

	Default configuration of Kconfig, defconfig file:
configs/mysystem_defconfig

	The legacy board header file:
include/configs/mysystem.h

The device tree source must be generated from your qsys/sopc design
using the sopc2dts tool. Then modified to fit your configuration.

Please find the sopc2dts download and usage at the wiki:
http://www.alterawiki.com/wiki/Sopc2dts

$ java -jar sopc2dts.jar --force-altr -i mysystem.sopcinfo -o mysystem.dts

You will need to add additional properties to the dts. Please find an
example at, arch/nios2/dts/10m50_devboard.dts.

	Add “stdout-path=…” property with your serial path to the chosen
node, like this:

chosen {
 stdout-path = &uart_0;
};

	If you use SPI/EPCS or I2C, you will need to add aliases to number
the sequence of these devices, like this:

aliases {
 spi0 = &epcs_controller;
};

Next, you will need a default config file. You may start with
10m50_defconfig, modify the options and save it.

$ make 10m50_defconfig
$ make menuconfig
$ make savedefconfig
$ cp defconfig configs/mysystem_defconfig

You will need to change the names of board header file and device tree,
and select the drivers with menuconfig.

Nios II architecture --->
 (mysystem) Board header file
Device Tree Control --->
 (mysystem) Default Device Tree for DT control

There is a selection of “Provider of DTB for DT control” in the Device
Tree Control menu.

	Separate DTB for DT control, will cat the dtb to end of u-boot
binary, output u-boot-dtb.bin. This should be used for production.
If you use boot copier, like EPCS boot copier, make sure the copier
copies all the u-boot-dtb.bin, not just u-boot.bin.

	Embedded DTB for DT control, will include the dtb inside the u-boot
binary. This is handy for development, eg, using gdb or nios2-download.

The last thing, legacy board header file describes those config options
not covered in Kconfig yet. You may copy it from 10m50_devboard.h:

$ cp include/configs/10m50_devboard.h include/configs/mysystem.h

Please change the SDRAM base and size to match your board. The base
should be cached virtual address, for Nios II with MMU it is 0xCxxx_xxxx
to 0xDxxx_xxxx.

#define CONFIG_SYS_SDRAM_BASE 0xc8000000
#define CONFIG_SYS_SDRAM_SIZE 0x08000000

You will need to change the environment variables location and setting,
too. You may change other configs to fit your board.

After all these changes, you may build and test:

$ export CROSS_COMPILE=nios2-elf- (or nios2-linux-gnu-)
$ make mysystem_defconfig
$ make

Enjoy!

Sandbox

Native Execution of U-Boot

The ‘sandbox’ architecture is designed to allow U-Boot to run under Linux on
almost any hardware. To achieve this it builds U-Boot (so far as possible)
as a normal C application with a main() and normal C libraries.

All of U-Boot’s architecture-specific code therefore cannot be built as part
of the sandbox U-Boot. The purpose of running U-Boot under Linux is to test
all the generic code, not specific to any one architecture. The idea is to
create unit tests which we can run to test this upper level code.

CONFIG_SANDBOX is defined when building a native board.

The board name is ‘sandbox’ but the vendor name is unset, so there is a
single board in board/sandbox.

CONFIG_SANDBOX_BIG_ENDIAN should be defined when running on big-endian
machines.

There are two versions of the sandbox: One using 32-bit-wide integers, and one
using 64-bit-wide integers. The 32-bit version can be build and run on either
32 or 64-bit hosts by either selecting or deselecting CONFIG_SANDBOX_32BIT; by
default, the sandbox it built for a 32-bit host. The sandbox using 64-bit-wide
integers can only be built on 64-bit hosts.

Note that standalone/API support is not available at present.

Basic Operation

To run sandbox U-Boot use something like:

make sandbox_defconfig all
./u-boot

Note: If you get errors about ‘sdl-config: Command not found’ you may need to
install libsdl2.0-dev or similar to get SDL support. Alternatively you can
build sandbox without SDL (i.e. no display/keyboard support) by removing
the CONFIG_SANDBOX_SDL line in include/configs/sandbox.h or using:

make sandbox_defconfig all NO_SDL=1
./u-boot

U-Boot will start on your computer, showing a sandbox emulation of the serial
console:

U-Boot 2014.04 (Mar 20 2014 - 19:06:00)

DRAM: 128 MiB
Using default environment

In: serial
Out: lcd
Err: lcd
=>

You can issue commands as your would normally. If the command you want is
not supported you can add it to include/configs/sandbox.h.

To exit, type ‘reset’ or press Ctrl-C.

Console / LCD support

Assuming that CONFIG_SANDBOX_SDL is defined when building, you can run the
sandbox with LCD and keyboard emulation, using something like:

./u-boot -d u-boot.dtb -l

This will start U-Boot with a window showing the contents of the LCD. If
that window has the focus then you will be able to type commands as you
would on the console. You can adjust the display settings in the device
tree file - see arch/sandbox/dts/sandbox.dts.

Command-line Options

Various options are available, mostly for test purposes. Use -h to see
available options. Some of these are described below.

The terminal is normally in what is called ‘raw-with-sigs’ mode. This means
that you can use arrow keys for command editing and history, but if you
press Ctrl-C, U-Boot will exit instead of handling this as a keypress.

Other options are ‘raw’ (so Ctrl-C is handled within U-Boot) and ‘cooked’
(where the terminal is in cooked mode and cursor keys will not work, Ctrl-C
will exit).

As mentioned above, -l causes the LCD emulation window to be shown.

A device tree binary file can be provided with -d. If you edit the source
(it is stored at arch/sandbox/dts/sandbox.dts) you must rebuild U-Boot to
recreate the binary file.

To use the default device tree, use -D. To use the test device tree, use -T.

To execute commands directly, use the -c option. You can specify a single
command, or multiple commands separated by a semicolon, as is normal in
U-Boot. Be careful with quoting as the shell will normally process and
swallow quotes. When -c is used, U-Boot exits after the command is complete,
but you can force it to go to interactive mode instead with -i.

Memory Emulation

Memory emulation is supported, with the size set by CONFIG_SYS_SDRAM_SIZE.
The -m option can be used to read memory from a file on start-up and write
it when shutting down. This allows preserving of memory contents across
test runs. You can tell U-Boot to remove the memory file after it is read
(on start-up) with the –rm_memory option.

To access U-Boot’s emulated memory within the code, use map_sysmem(). This
function is used throughout U-Boot to ensure that emulated memory is used
rather than the U-Boot application memory. This provides memory starting
at 0 and extending to the size of the emulation.

Storing State

With sandbox you can write drivers which emulate the operation of drivers on
real devices. Some of these drivers may want to record state which is
preserved across U-Boot runs. This is particularly useful for testing. For
example, the contents of a SPI flash chip should not disappear just because
U-Boot exits.

State is stored in a device tree file in a simple format which is driver-
specific. You then use the -s option to specify the state file. Use -r to
make U-Boot read the state on start-up (otherwise it starts empty) and -w
to write it on exit (otherwise the stored state is left unchanged and any
changes U-Boot made will be lost). You can also use -n to tell U-Boot to
ignore any problems with missing state. This is useful when first running
since the state file will be empty.

The device tree file has one node for each driver - the driver can store
whatever properties it likes in there. See ‘Writing Sandbox Drivers’ below
for more details on how to get drivers to read and write their state.

Running and Booting

Since there is no machine architecture, sandbox U-Boot cannot actually boot
a kernel, but it does support the bootm command. Filesystems, memory
commands, hashing, FIT images, verified boot and many other features are
supported.

When ‘bootm’ runs a kernel, sandbox will exit, as U-Boot does on a real
machine. Of course in this case, no kernel is run.

It is also possible to tell U-Boot that it has jumped from a temporary
previous U-Boot binary, with the -j option. That binary is automatically
removed by the U-Boot that gets the -j option. This allows you to write
tests which emulate the action of chain-loading U-Boot, typically used in
a situation where a second ‘updatable’ U-Boot is stored on your board. It
is very risky to overwrite or upgrade the only U-Boot on a board, since a
power or other failure will brick the board and require return to the
manufacturer in the case of a consumer device.

Supported Drivers

U-Boot sandbox supports these emulations:

	Block devices

	Chrome OS EC

	GPIO

	Host filesystem (access files on the host from within U-Boot)

	I2C

	Keyboard (Chrome OS)

	LCD

	Network

	Serial (for console only)

	Sound (incomplete - see sandbox_sdl_sound_init() for details)

	SPI

	SPI flash

	TPM (Trusted Platform Module)

A wide range of commands are implemented. Filesystems which use a block
device are supported.

Also sandbox supports driver model (CONFIG_DM) and associated commands.

Sandbox Variants

There are unfortunately quite a few variants at present:

	sandbox:

	should be used for most tests

	sandbox64:

	special build that forces a 64-bit host

	sandbox_flattree:

	builds with dev_read_…() functions defined as inline.
We need this build so that we can test those inline functions, and we
cannot build with both the inline functions and the non-inline functions
since they are named the same.

	sandbox_spl:

	builds sandbox with SPL support, so you can run spl/u-boot-spl
and it will start up and then load ./u-boot. It is also possible to
run ./u-boot directly.

Of these sandbox_spl can probably be removed since it is a superset of sandbox.

Most of the config options should be identical between these variants.

Linux RAW Networking Bridge

The sandbox_eth_raw driver bridges traffic between the bottom of the network
stack and the RAW sockets API in Linux. This allows much of the U-Boot network
functionality to be tested in sandbox against real network traffic.

For Ethernet network adapters, the bridge utilizes the RAW AF_PACKET API. This
is needed to get access to the lowest level of the network stack in Linux. This
means that all of the Ethernet frame is included. This allows the U-Boot network
stack to be fully used. In other words, nothing about the Linux network stack is
involved in forming the packets that end up on the wire. To receive the
responses to packets sent from U-Boot the network interface has to be set to
promiscuous mode so that the network card won’t filter out packets not destined
for its configured (on Linux) MAC address.

The RAW sockets Ethernet API requires elevated privileges in Linux. You can
either run as root, or you can add the capability needed like so:

sudo /sbin/setcap "CAP_NET_RAW+ep" /path/to/u-boot

The default device tree for sandbox includes an entry for eth0 on the sandbox
host machine whose alias is “eth1”. The following are a few examples of network
operations being tested on the eth0 interface.

sudo /path/to/u-boot -D

DHCP
....

setenv autoload no
setenv ethrotate no
setenv ethact eth1
dhcp

PING
....

setenv autoload no
setenv ethrotate no
setenv ethact eth1
dhcp
ping $gatewayip

TFTP
....

setenv autoload no
setenv ethrotate no
setenv ethact eth1
dhcp
setenv serverip WWW.XXX.YYY.ZZZ
tftpboot u-boot.bin

The bridge also supports (to a lesser extent) the localhost interface, ‘lo’.

The ‘lo’ interface cannot use the RAW AF_PACKET API because the lo interface
doesn’t support Ethernet-level traffic. It is a higher-level interface that is
expected only to be used at the AF_INET level of the API. As such, the most raw
we can get on that interface is the RAW AF_INET API on UDP. This allows us to
set the IP_HDRINCL option to include everything except the Ethernet header in
the packets we send and receive.

Because only UDP is supported, ICMP traffic will not work, so expect that ping
commands will time out.

The default device tree for sandbox includes an entry for lo on the sandbox
host machine whose alias is “eth5”. The following is an example of a network
operation being tested on the lo interface.

TFTP
....

setenv ethrotate no
setenv ethact eth5
tftpboot u-boot.bin

SPI Emulation

Sandbox supports SPI and SPI flash emulation.

This is controlled by the spi_sf argument, the format of which is:

bus:cs:device:file

bus - SPI bus number
cs - SPI chip select number
device - SPI device emulation name
file - File on disk containing the data

For example:

dd if=/dev/zero of=spi.bin bs=1M count=4
./u-boot --spi_sf 0:0:M25P16:spi.bin

With this setup you can issue SPI flash commands as normal:

=>sf probe
SF: Detected M25P16 with page size 64 KiB, total 2 MiB
=>sf read 0 0 10000
SF: 65536 bytes @ 0x0 Read: OK

Since this is a full SPI emulation (rather than just flash), you can
also use low-level SPI commands:

=>sspi 0:0 32 9f
FF202015

This is issuing a READ_ID command and getting back 20 (ST Micro) part
0x2015 (the M25P16).

Drivers are connected to a particular bus/cs using sandbox’s state
structure (see the ‘spi’ member). A set of operations must be provided
for each driver.

Configuration settings for the curious are:

	CONFIG_SANDBOX_SPI_MAX_BUS:

	The maximum number of SPI buses supported by the driver (default 1).

	CONFIG_SANDBOX_SPI_MAX_CS:

	The maximum number of chip selects supported by the driver (default 10).

	CONFIG_SPI_IDLE_VAL:

	The idle value on the SPI bus

Block Device Emulation

U-Boot can use raw disk images for block device emulation. To e.g. list
the contents of the root directory on the second partion of the image
“disk.raw”, you can use the following commands:

=>host bind 0 ./disk.raw
=>ls host 0:2

A disk image can be created using the following commands:

$> truncate -s 1200M ./disk.raw
$> echo -e "label: gpt\n,64M,U\n,,L" | /usr/sbin/sgdisk ./disk.raw
$> lodev=`sudo losetup -P -f --show ./disk.raw`
$> sudo mkfs.vfat -n EFI -v ${lodev}p1
$> sudo mkfs.ext4 -L ROOT -v ${lodev}p2

or utilize the device described in test/py/make_test_disk.py:

#!/usr/bin/python
import make_test_disk
make_test_disk.makeDisk()

Writing Sandbox Drivers

Generally you should put your driver in a file containing the word ‘sandbox’
and put it in the same directory as other drivers of its type. You can then
implement the same hooks as the other drivers.

To access U-Boot’s emulated memory, use map_sysmem() as mentioned above.

If your driver needs to store configuration or state (such as SPI flash
contents or emulated chip registers), you can use the device tree as
described above. Define handlers for this with the SANDBOX_STATE_IO macro.
See arch/sandbox/include/asm/state.h for documentation. In short you provide
a node name, compatible string and functions to read and write the state.
Since writing the state can expand the device tree, you may need to use
state_setprop() which does this automatically and avoids running out of
space. See existing code for examples.

Debugging the init sequence

If you get a failure in the initcall sequence, like this:

initcall sequence 0000560775957c80 failed at call 0000000000048134 (err=-96)

Then you use can use grep to see which init call failed, e.g.:

$ grep 0000000000048134 u-boot.map
stdio_add_devices

Of course another option is to run it with a debugger such as gdb:

$ gdb u-boot
...
(gdb) br initcall.h:41
Breakpoint 1 at 0x4db9d: initcall.h:41. (2 locations)

Note that two locations are reported, since this function is used in both
board_init_f() and board_init_r().

(gdb) r
Starting program: /tmp/b/sandbox/u-boot
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".

U-Boot 2018.09-00264-ge0c2ba9814-dirty (Sep 22 2018 - 12:21:46 -0600)

DRAM: 128 MiB
MMC:

Breakpoint 1, initcall_run_list (init_sequence=0x5555559619e0 <init_sequence_f>)
 at /scratch/sglass/cosarm/src/third_party/u-boot/files/include/initcall.h:41
41 printf("initcall sequence %p failed at call %p (err=%d)\n",
(gdb) print *init_fnc_ptr
$1 = (const init_fnc_t) 0x55555559c114 <stdio_add_devices>
(gdb)

This approach can be used on normal boards as well as sandbox.

SDL_CONFIG

If sdl-config is on a different path from the default, set the SDL_CONFIG
environment variable to the correct pathname before building U-Boot.

Using valgrind / memcheck

It is possible to run U-Boot under valgrind to check memory allocations:

valgrind u-boot

If you are running sandbox SPL or TPL, then valgrind will not by default
notice when U-Boot jumps from TPL to SPL, or from SPL to U-Boot proper. To
fix this, use:

valgrind --trace-children=yes u-boot

Testing

U-Boot sandbox can be used to run various tests, mostly in the test/
directory. These include:

	command_ut:

	Unit tests for command parsing and handling

	compression:

	Unit tests for U-Boot’s compression algorithms, useful for
security checking. It supports gzip, bzip2, lzma and lzo.

	driver model:

	Run this pytest:

./test/py/test.py --bd sandbox --build -k ut_dm -v

	image:

	Unit tests for images:
test/image/test-imagetools.sh - multi-file images
test/image/test-fit.py - FIT images

	tracing:

	test/trace/test-trace.sh tests the tracing system (see README.trace)

	verified boot:

	See test/vboot/vboot_test.sh for this

If you change or enhance any of the above subsystems, you shold write or
expand a test and include it with your patch series submission. Test
coverage in U-Boot is limited, as we need to work to improve it.

Note that many of these tests are implemented as commands which you can
run natively on your board if desired (and enabled).

To run all tests use “make check”.

To run a single test in an existing sandbox build, you can use -T to use the
test device tree, and -c to select the test:

/tmp/b/sandbox/u-boot -T -c “ut dm pci_busdev”

This runs dm_test_pci_busdev() which is in test/dm/pci.c

Memory Map

Sandbox has its own emulated memory starting at 0. Here are some of the things
that are mapped into that memory:

	Addr

	Config

	Usage

	0

	CONFIG_SYS_FDT_LOAD_ADDR

	Device tree

	e000

	CONFIG_BLOBLIST_ADDR

	Blob list

	10000

	CONFIG_MALLOC_F_ADDR

	Early memory allocation

	f0000

	CONFIG_PRE_CON_BUF_ADDR

	Pre-console buffer

	100000

	CONFIG_TRACE_EARLY_ADDR

	Early trace buffer (if enabled)

SuperH

What’s this?

This file contains status information for the port of U-Boot to the
Renesas SuperH series of CPUs.

Overview

SuperH has an original boot loader. However, source code is dirty, and
maintenance is not done. To improve sharing and the maintenance of the code,
Nobuhiro Iwamatsu started the porting to U-Boot in 2007.

Supported CPUs

Renesas SH7750/SH7750R

This CPU has the SH4 core.

Renesas SH7722

This CPU has the SH4AL-DSP core.

Renesas SH7780

This CPU has the SH4A core.

Supported Boards

Hitachi UL MS7750SE01/MS7750RSE01

Board specific code is in board/ms7750se
To use this board, type “make ms7750se_config”.
Support devices are:

	SCIF

	SDRAM

	NOR Flash

	Marubun PCMCIA

Hitachi UL MS7722SE01

Board specific code is in board/ms7722se
To use this board, type “make ms7722se_config”.
Support devices are:

	SCIF

	SDRAM

	NOR Flash

	Marubun PCMCIA

	SMC91x ethernet

Hitachi UL MS7720ERP01

Board specific code is in board/ms7720se
To use this board, type “make ms7720se_config”.
Support devices are:

	SCIF

	SDRAM

	NOR Flash

	Marubun PCMCIA

Renesas R7780MP

Board specific code is in board/r7780mp
To use this board, type “make r7780mp_config”.
Support devices are:

	SCIF

	DDR-SDRAM

	NOR Flash

	Compact Flash

	ASIX ethernet

	SH7780 PCI bridge

	RTL8110 ethernet

In SuperH, S-record and binary of made u-boot work on the memory.
When u-boot is written in the flash, it is necessary to change the
address by using ‘objcopy’:

ex) shX-linux-objcopy -Ibinary -Osrec u-boot.bin u-boot.flash.srec

Compiler

	You can use the following of u-boot to compile.

	
	SuperH Linux Open site [http://www.superh-linux.org/]

	KPIT GNU tools [http://www.kpitgnutools.com/]

Future

I plan to support the following CPUs and boards.

CPUs

	SH7751R(SH4)

Boards

Many boards ;-)

x86

This document describes the information about U-Boot running on x86 targets,
including supported boards, build instructions, todo list, etc.

Status

U-Boot supports running as a coreboot [http://www.coreboot.org] payload on x86. So far only Link
(Chromebook Pixel) and QEMU [http://www.qemu.org] x86 targets have been tested, but it should
work with minimal adjustments on other x86 boards since coreboot deals with
most of the low-level details.

U-Boot is a main bootloader on Intel Edison board.

U-Boot also supports booting directly from x86 reset vector, without coreboot.
In this case, known as bare mode, from the fact that it runs on the
‘bare metal’, U-Boot acts like a BIOS replacement. The following platforms
are supported:

	Bayley Bay CRB

	Cherry Hill CRB

	Congatec QEVAL 2.0 & conga-QA3/E3845

	Cougar Canyon 2 CRB

	Crown Bay CRB

	Galileo

	Link (Chromebook Pixel)

	Minnowboard MAX

	Samus (Chromebook Pixel 2015)

	QEMU x86 (32-bit & 64-bit)

As for loading an OS, U-Boot supports directly booting a 32-bit or 64-bit
Linux kernel as part of a FIT image. It also supports a compressed zImage.
U-Boot supports loading an x86 VxWorks kernel. Please check README.vxworks
for more details.

Build Instructions for U-Boot as BIOS replacement (bare mode)

Building a ROM version of U-Boot (hereafter referred to as u-boot.rom) is a
little bit tricky, as generally it requires several binary blobs which are not
shipped in the U-Boot source tree. Due to this reason, the u-boot.rom build is
not turned on by default in the U-Boot source tree. Firstly, you need turn it
on by enabling the ROM build either via an environment variable:

$ export BUILD_ROM=y

or via configuration:

CONFIG_BUILD_ROM=y

Both tell the Makefile to build u-boot.rom as a target.

CPU Microcode

Modern CPUs usually require a special bit stream called microcode [http://en.wikipedia.org/wiki/Microcode] to be
loaded on the processor after power up in order to function properly. U-Boot
has already integrated these as hex dumps in the source tree.

SMP Support

On a multicore system, U-Boot is executed on the bootstrap processor (BSP).
Additional application processors (AP) can be brought up by U-Boot. In order to
have an SMP kernel to discover all of the available processors, U-Boot needs to
prepare configuration tables which contain the multi-CPUs information before
loading the OS kernel. Currently U-Boot supports generating two types of tables
for SMP, called Simple Firmware Interface (SFI [http://simplefirmware.org]) and Multi-Processor (MP [http://www.intel.com/design/archives/processors/pro/docs/242016.htm])
tables. The writing of these two tables are controlled by two Kconfig
options GENERATE_SFI_TABLE and GENERATE_MP_TABLE.

Driver Model

x86 has been converted to use driver model for serial, GPIO, SPI, SPI flash,
keyboard, real-time clock, USB. Video is in progress.

Device Tree

x86 uses device tree to configure the board thus requires CONFIG_OF_CONTROL to
be turned on. Not every device on the board is configured via device tree, but
more and more devices will be added as time goes by. Check out the directory
arch/x86/dts/ for these device tree source files.

Useful Commands

In keeping with the U-Boot philosophy of providing functions to check and
adjust internal settings, there are several x86-specific commands that may be
useful:

	fsp

	Display information about Intel Firmware Support Package (FSP).
This is only available on platforms which use FSP, mostly Atom.

	iod

	Display I/O memory

	iow

	Write I/O memory

	mtrr

	List and set the Memory Type Range Registers (MTRR). These are used to
tell the CPU whether memory is cacheable and if so the cache write
mode to use. U-Boot sets up some reasonable values but you can
adjust then with this command.

Booting Ubuntu

As an example of how to set up your boot flow with U-Boot, here are
instructions for starting Ubuntu from U-Boot. These instructions have been
tested on Minnowboard MAX with a SATA drive but are equally applicable on
other platforms and other media. There are really only four steps and it’s a
very simple script, but a more detailed explanation is provided here for
completeness.

Note: It is possible to set up U-Boot to boot automatically using syslinux.
It could also use the grub.cfg file (/efi/ubuntu/grub.cfg) to obtain the
GUID. If you figure these out, please post patches to this README.

Firstly, you will need Ubuntu installed on an available disk. It should be
possible to make U-Boot start a USB start-up disk but for now let’s assume
that you used another boot loader to install Ubuntu.

Use the U-Boot command line to find the UUID of the partition you want to
boot. For example our disk is SCSI device 0:

=> part list scsi 0

Partition Map for SCSI device 0 -- Partition Type: EFI

 Part Start LBA End LBA Name
 Attributes
 Type GUID
 Partition GUID
 1 0x00000800 0x001007ff ""
 attrs: 0x0000000000000000
 type: c12a7328-f81f-11d2-ba4b-00a0c93ec93b
 guid: 9d02e8e4-4d59-408f-a9b0-fd497bc9291c
 2 0x00100800 0x037d8fff ""
 attrs: 0x0000000000000000
 type: 0fc63daf-8483-4772-8e79-3d69d8477de4
 guid: 965c59ee-1822-4326-90d2-b02446050059
 3 0x037d9000 0x03ba27ff ""
 attrs: 0x0000000000000000
 type: 0657fd6d-a4ab-43c4-84e5-0933c84b4f4f
 guid: 2c4282bd-1e82-4bcf-a5ff-51dedbf39f17
 =>

This shows that your SCSI disk has three partitions. The really long hex
strings are called Globally Unique Identifiers (GUIDs). You can look up the
‘type’ ones here [https://en.wikipedia.org/wiki/GUID_Partition_Table]. On this disk the first partition is for EFI and is in
VFAT format (DOS/Windows):

=> fatls scsi 0:1
 efi/

0 file(s), 1 dir(s)

Partition 2 is ‘Linux filesystem data’ so that will be our root disk. It is
in ext2 format:

=> ext2ls scsi 0:2
<DIR> 4096 .
<DIR> 4096 ..
<DIR> 16384 lost+found
<DIR> 4096 boot
<DIR> 12288 etc
<DIR> 4096 media
<DIR> 4096 bin
<DIR> 4096 dev
<DIR> 4096 home
<DIR> 4096 lib
<DIR> 4096 lib64
<DIR> 4096 mnt
<DIR> 4096 opt
<DIR> 4096 proc
<DIR> 4096 root
<DIR> 4096 run
<DIR> 12288 sbin
<DIR> 4096 srv
<DIR> 4096 sys
<DIR> 4096 tmp
<DIR> 4096 usr
<DIR> 4096 var
<SYM> 33 initrd.img
<SYM> 30 vmlinuz
<DIR> 4096 cdrom
<SYM> 33 initrd.img.old
=>

and if you look in the /boot directory you will see the kernel:

=> ext2ls scsi 0:2 /boot
<DIR> 4096 .
<DIR> 4096 ..
<DIR> 4096 efi
<DIR> 4096 grub
 3381262 System.map-3.13.0-32-generic
 1162712 abi-3.13.0-32-generic
 165611 config-3.13.0-32-generic
 176500 memtest86+.bin
 178176 memtest86+.elf
 178680 memtest86+_multiboot.bin
 5798112 vmlinuz-3.13.0-32-generic
 165762 config-3.13.0-58-generic
 1165129 abi-3.13.0-58-generic
 5823136 vmlinuz-3.13.0-58-generic
 19215259 initrd.img-3.13.0-58-generic
 3391763 System.map-3.13.0-58-generic
 5825048 vmlinuz-3.13.0-58-generic.efi.signed
 28304443 initrd.img-3.13.0-32-generic
=>

The ‘vmlinuz’ files contain a packaged Linux kernel. The format is a kind of
self-extracting compressed file mixed with some ‘setup’ configuration data.
Despite its size (uncompressed it is >10MB) this only includes a basic set of
device drivers, enough to boot on most hardware types.

The ‘initrd’ files contain a RAM disk. This is something that can be loaded
into RAM and will appear to Linux like a disk. Ubuntu uses this to hold lots
of drivers for whatever hardware you might have. It is loaded before the
real root disk is accessed.

The numbers after the end of each file are the version. Here it is Linux
version 3.13. You can find the source code for this in the Linux tree with
the tag v3.13. The ‘.0’ allows for additional Linux releases to fix problems,
but normally this is not needed. The ‘-58’ is used by Ubuntu. Each time they
release a new kernel they increment this number. New Ubuntu versions might
include kernel patches to fix reported bugs. Stable kernels can exist for
some years so this number can get quite high.

The ‘.efi.signed’ kernel is signed for EFI’s secure boot. U-Boot has its own
secure boot mechanism - see this [http://events.linuxfoundation.org/sites/events/files/slides/chromeos_and_diy_vboot_0.pdf] & that [http://events.linuxfoundation.org/sites/events/files/slides/elce-2014.pdf]. It cannot read .efi files
at present.

To boot Ubuntu from U-Boot the steps are as follows:

	Set up the boot arguments. Use the GUID for the partition you want to boot:

=> setenv bootargs root=/dev/disk/by-partuuid/965c59ee-1822-4326-90d2-b02446050059 ro

Here root= tells Linux the location of its root disk. The disk is specified
by its GUID, using ‘/dev/disk/by-partuuid/’, a Linux path to a ‘directory’
containing all the GUIDs Linux has found. When it starts up, there will be a
file in that directory with this name in it. It is also possible to use a
device name here, see later.

	Load the kernel. Since it is an ext2/4 filesystem we can do:

=> ext2load scsi 0:2 03000000 /boot/vmlinuz-3.13.0-58-generic

The address 30000000 is arbitrary, but there seem to be problems with using
small addresses (sometimes Linux cannot find the ramdisk). This is 48MB into
the start of RAM (which is at 0 on x86).

	Load the ramdisk (to 64MB):

=> ext2load scsi 0:2 04000000 /boot/initrd.img-3.13.0-58-generic

	Start up the kernel. We need to know the size of the ramdisk, but can use
a variable for that. U-Boot sets ‘filesize’ to the size of the last file it
loaded:

=> zboot 03000000 0 04000000 ${filesize}

Type ‘help zboot’ if you want to see what the arguments are. U-Boot on x86 is
quite verbose when it boots a kernel. You should see these messages from
U-Boot:

Valid Boot Flag
Setup Size = 0x00004400
Magic signature found
Using boot protocol version 2.0c
Linux kernel version 3.13.0-58-generic (buildd@allspice) #97-Ubuntu SMP Wed Jul 8 02:56:15 UTC 2015
Building boot_params at 0x00090000
Loading bzImage at address 100000 (5805728 bytes)
Magic signature found
Initial RAM disk at linear address 0x04000000, size 19215259 bytes
Kernel command line: "root=/dev/disk/by-partuuid/965c59ee-1822-4326-90d2-b02446050059 ro"

Starting kernel ...

U-Boot prints out some bootstage timing. This is more useful if you put the
above commands into a script since then it will be faster:

Timer summary in microseconds:
 Mark Elapsed Stage
 0 0 reset
 241,535 241,535 board_init_r
 2,421,611 2,180,076 id=64
 2,421,790 179 id=65
 2,428,215 6,425 main_loop
 48,860,584 46,432,369 start_kernel

Accumulated time:
 240,329 ahci
 1,422,704 vesa display

Now the kernel actually starts (if you want to examine kernel boot up message on
the serial console, append “console=ttyS0,115200” to the kernel command line):

[0.000000] Initializing cgroup subsys cpuset
[0.000000] Initializing cgroup subsys cpu
[0.000000] Initializing cgroup subsys cpuacct
[0.000000] Linux version 3.13.0-58-generic (buildd@allspice) (gcc version 4.8.2 (Ubuntu 4.8.2-19ubuntu1)) #97-Ubuntu SMP Wed Jul 8 02:56:15 UTC 2015 (Ubuntu 3.13.0-58.97-generic 3.13.11-ckt22)
[0.000000] Command line: root=/dev/disk/by-partuuid/965c59ee-1822-4326-90d2-b02446050059 ro console=ttyS0,115200

It continues for a long time. Along the way you will see it pick up your
ramdisk:

[0.000000] RAMDISK: [mem 0x04000000-0x05253fff]
...
[0.788540] Trying to unpack rootfs image as initramfs...
[1.540111] Freeing initrd memory: 18768K (ffff880004000000 - ffff880005254000)
...

Later it actually starts using it:

Begin: Running /scripts/local-premount ... done.

You should also see your boot disk turn up:

[4.357243] scsi 1:0:0:0: Direct-Access ATA ADATA SP310 5.2 PQ: 0 ANSI: 5
[4.366860] sd 1:0:0:0: [sda] 62533296 512-byte logical blocks: (32.0 GB/29.8 GiB)
[4.375677] sd 1:0:0:0: Attached scsi generic sg0 type 0
[4.381859] sd 1:0:0:0: [sda] Write Protect is off
[4.387452] sd 1:0:0:0: [sda] Write cache: enabled, read cache: enabled, doesn't support DPO or FUA
[4.399535] sda: sda1 sda2 sda3

Linux has found the three partitions (sda1-3). Mercifully it doesn’t print out
the GUIDs. In step 1 above we could have used:

setenv bootargs root=/dev/sda2 ro

instead of the GUID. However if you add another drive to your board the
numbering may change whereas the GUIDs will not. So if your boot partition
becomes sdb2, it will still boot. For embedded systems where you just want to
boot the first disk, you have that option.

The last thing you will see on the console is mention of plymouth (which
displays the Ubuntu start-up screen) and a lot of ‘Starting’ messages:

* Starting Mount filesystems on boot [OK]

After a pause you should see a login screen on your display and you are done.

If you want to put this in a script you can use something like this:

setenv bootargs root=UUID=b2aaf743-0418-4d90-94cc-3e6108d7d968 ro
setenv boot zboot 03000000 0 04000000 \${filesize}
setenv bootcmd "ext2load scsi 0:2 03000000 /boot/vmlinuz-3.13.0-58-generic; ext2load scsi 0:2 04000000 /boot/initrd.img-3.13.0-58-generic; run boot"
saveenv

The is to tell the shell not to evaluate ${filesize} as part of the setenv
command.

You can also bake this behaviour into your build by hard-coding the
environment variables if you add this to minnowmax.h:

#undef CONFIG_BOOTCOMMAND
#define CONFIG_BOOTCOMMAND \
 "ext2load scsi 0:2 03000000 /boot/vmlinuz-3.13.0-58-generic; " \
 "ext2load scsi 0:2 04000000 /boot/initrd.img-3.13.0-58-generic; " \
 "run boot"

#undef CONFIG_EXTRA_ENV_SETTINGS
#define CONFIG_EXTRA_ENV_SETTINGS "boot=zboot 03000000 0 04000000 ${filesize}"

and change CONFIG_BOOTARGS value in configs/minnowmax_defconfig to:

CONFIG_BOOTARGS="root=/dev/sda2 ro"

Test with SeaBIOS

SeaBIOS [http://www.seabios.org/SeaBIOS] is an open source implementation of a 16-bit x86 BIOS. It can run
in an emulator or natively on x86 hardware with the use of U-Boot. With its
help, we can boot some OSes that require 16-bit BIOS services like Windows/DOS.

As U-Boot, we have to manually create a table where SeaBIOS gets various system
information (eg: E820) from. The table unfortunately has to follow the coreboot
table format as SeaBIOS currently supports booting as a coreboot payload.

To support loading SeaBIOS, U-Boot should be built with CONFIG_SEABIOS on.
Booting SeaBIOS is done via U-Boot’s bootelf command, like below:

=> tftp bios.bin.elf;bootelf
Using e1000#0 device
TFTP from server 10.10.0.100; our IP address is 10.10.0.108
...
Bytes transferred = 122124 (1dd0c hex)
Starting application at 0x000ff06e ...
SeaBIOS (version rel-1.9.0)
...

bios.bin.elf is the SeaBIOS image built from SeaBIOS source tree.
Make sure it is built as follows:

$ make menuconfig

Inside the “General Features” menu, select “Build for coreboot” as the
“Build Target”. Inside the “Debugging” menu, turn on “Serial port debugging”
so that we can see something as soon as SeaBIOS boots. Leave other options
as in their default state. Then:

$ make
...
Total size: 121888 Fixed: 66496 Free: 9184 (used 93.0% of 128KiB rom)
Creating out/bios.bin.elf

Currently this is tested on QEMU x86 target with U-Boot chain-loading SeaBIOS
to install/boot a Windows XP OS (below for example command to install Windows).

Create a 10G disk.img as the virtual hard disk
$ qemu-img create -f qcow2 disk.img 10G

Install a Windows XP OS from an ISO image 'winxp.iso'
$ qemu-system-i386 -serial stdio -bios u-boot.rom -hda disk.img -cdrom winxp.iso -smp 2 -m 512

Boot a Windows XP OS installed on the virutal hard disk
$ qemu-system-i386 -serial stdio -bios u-boot.rom -hda disk.img -smp 2 -m 512

This is also tested on Intel Crown Bay board with a PCIe graphics card, booting
SeaBIOS then chain-loading a GRUB on a USB drive, then Linux kernel finally.

If you are using Intel Integrated Graphics Device (IGD) as the primary display
device on your board, SeaBIOS needs to be patched manually to get its VGA ROM
loaded and run by SeaBIOS. SeaBIOS locates VGA ROM via the PCI expansion ROM
register, but IGD device does not have its VGA ROM mapped by this register.
Its VGA ROM is packaged as part of u-boot.rom at a configurable flash address
which is unknown to SeaBIOS. An example patch is needed for SeaBIOS below:

diff --git a/src/optionroms.c b/src/optionroms.c
index 65f7fe0..c7b6f5e 100644
--- a/src/optionroms.c
+++ b/src/optionroms.c
@@ -324,6 +324,8 @@ init_pcirom(struct pci_device *pci, int isvga, u64 *sources)
 rom = deploy_romfile(file);
 else if (RunPCIroms > 1 || (RunPCIroms == 1 && isvga))
 rom = map_pcirom(pci);
+ if (pci->bdf == pci_to_bdf(0, 2, 0))
+ rom = (struct rom_header *)0xfff90000;
 if (! rom)
 // No ROM present.
 return;

Note: the patch above expects IGD device is at PCI b.d.f 0.2.0 and its VGA ROM
is at 0xfff90000 which corresponds to CONFIG_VGA_BIOS_ADDR on Minnowboard MAX.
Change these two accordingly if this is not the case on your board.

Development Flow

These notes are for those who want to port U-Boot to a new x86 platform.

Since x86 CPUs boot from SPI flash, a SPI flash emulator is a good investment.
The Dediprog em100 can be used on Linux.

The em100 tool is available here: http://review.coreboot.org/p/em100.git

On Minnowboard Max the following command line can be used:

sudo em100 -s -p LOW -d u-boot.rom -c W25Q64DW -r

A suitable clip for connecting over the SPI flash chip is here:
http://www.dediprog.com/pd/programmer-accessories/EM-TC-8.

This allows you to override the SPI flash contents for development purposes.
Typically you can write to the em100 in around 1200ms, considerably faster
than programming the real flash device each time. The only important
limitation of the em100 is that it only supports SPI bus speeds up to 20MHz.
This means that images must be set to boot with that speed. This is an
Intel-specific feature - e.g. tools/ifttool has an option to set the SPI
speed in the SPI descriptor region.

If your chip/board uses an Intel Firmware Support Package (FSP) it is fairly
easy to fit it in. You can follow the Minnowboard Max implementation, for
example. Hopefully you will just need to create new files similar to those
in arch/x86/cpu/baytrail which provide Bay Trail support.

If you are not using an FSP you have more freedom and more responsibility.
The ivybridge support works this way, although it still uses a ROM for
graphics and still has binary blobs containing Intel code. You should aim to
support all important peripherals on your platform including video and storage.
Use the device tree for configuration where possible.

For the microcode you can create a suitable device tree file using the
microcode tool:

./tools/microcode-tool -d microcode.dat -m <model> create

or if you only have header files and not the full Intel microcode.dat database:

./tools/microcode-tool -H BAY_TRAIL_FSP_KIT/Microcode/M0130673322.h \
 -H BAY_TRAIL_FSP_KIT/Microcode/M0130679901.h -m all create

These are written to arch/x86/dts/microcode/ by default.

Note that it is possible to just add the micrcode for your CPU if you know its
model. U-Boot prints this information when it starts:

CPU: x86_64, vendor Intel, device 30673h

so here we can use the M0130673322 file.

If you platform can display POST codes on two little 7-segment displays on
the board, then you can use post_code() calls from C or assembler to monitor
boot progress. This can be good for debugging.

If not, you can try to get serial working as early as possible. The early
debug serial port may be useful here. See setup_internal_uart() for an example.

During the U-Boot porting, one of the important steps is to write correct PIRQ
routing information in the board device tree. Without it, device drivers in the
Linux kernel won’t function correctly due to interrupt is not working. Please
refer to U-Boot doc for
the device tree bindings of Intel interrupt router. Here we have more details
on the intel,pirq-routing property below.

intel,pirq-routing = <
 PCI_BDF(0, 2, 0) INTA PIRQA
 ...
>;

As you see each entry has 3 cells. For the first one, we need describe all pci
devices mounted on the board. For SoC devices, normally there is a chapter on
the chipset datasheet which lists all the available PCI devices. For example on
Bay Trail, this is chapter 4.3 (PCI configuration space). For the second one, we
can get the interrupt pin either from datasheet or hardware via U-Boot shell.
The reliable source is the hardware as sometimes chipset datasheet is not 100%
up-to-date. Type ‘pci header’ plus the device’s pci bus/device/function number
from U-Boot shell below:

=> pci header 0.1e.1
 vendor ID = 0x8086
 device ID = 0x0f08
 ...
 interrupt line = 0x09
 interrupt pin = 0x04
 ...

It shows this PCI device is using INTD pin as it reports 4 in the interrupt pin
register. Repeat this until you get interrupt pins for all the devices. The last
cell is the PIRQ line which a particular interrupt pin is mapped to. On Intel
chipset, the power-up default mapping is INTA/B/C/D maps to PIRQA/B/C/D. This
can be changed by registers in LPC bridge. So far Intel FSP does not touch those
registers so we can write down the PIRQ according to the default mapping rule.

Once we get the PIRQ routing information in the device tree, the interrupt
allocation and assignment will be done by U-Boot automatically. Now you can
enable CONFIG_GENERATE_PIRQ_TABLE for testing Linux kernel using i8259 PIC and
CONFIG_GENERATE_MP_TABLE for testing Linux kernel using local APIC and I/O APIC.

This script might be useful. If you feed it the output of ‘pci long’ from
U-Boot then it will generate a device tree fragment with the interrupt
configuration for each device (note it needs gawk 4.0.0):

$ cat console_output |awk '/PCI/ {device=$4} /interrupt line/ {line=$4} \
 /interrupt pin/ {pin = $4; if (pin != "0x00" && pin != "0xff") \
 {patsplit(device, bdf, "[0-9a-f]+"); \
 printf "PCI_BDF(%d, %d, %d) INT%c PIRQ%c\n", strtonum("0x" bdf[1]), \
 strtonum("0x" bdf[2]), bdf[3], strtonum(pin) + 64, 64 + strtonum(pin)}}'

Example output:

PCI_BDF(0, 2, 0) INTA PIRQA
PCI_BDF(0, 3, 0) INTA PIRQA
...

Porting Hints

Quark-specific considerations

To port U-Boot to other boards based on the Intel Quark SoC, a few things need
to be taken care of. The first important part is the Memory Reference Code (MRC)
parameters. Quark MRC supports memory-down configuration only. All these MRC
parameters are supplied via the board device tree. To get started, first copy
the MRC section of arch/x86/dts/galileo.dts to your board’s device tree, then
change these values by consulting board manuals or your hardware vendor.
Available MRC parameter values are listed in include/dt-bindings/mrc/quark.h.
The other tricky part is with PCIe. Quark SoC integrates two PCIe root ports,
but by default they are held in reset after power on. In U-Boot, PCIe
initialization is properly handled as per Quark’s firmware writer guide.
In your board support codes, you need provide two routines to aid PCIe
initialization, which are board_assert_perst() and board_deassert_perst().
The two routines need implement a board-specific mechanism to assert/deassert
PCIe PERST# pin. Care must be taken that in those routines that any APIs that
may trigger PCI enumeration process are strictly forbidden, as any access to
PCIe root port’s configuration registers will cause system hang while it is
held in reset. For more details, check how they are implemented by the Intel
Galileo board support codes in board/intel/galileo/galileo.c.

coreboot

See scripts/coreboot.sed which can assist with porting coreboot code into
U-Boot drivers. It will not resolve all build errors, but will perform common
transformations. Remember to add attribution to coreboot for new files added
to U-Boot. This should go at the top of each file and list the coreboot
filename where the code originated.

Debugging ACPI issues with Windows

Windows might cache system information and only detect ACPI changes if you
modify the ACPI table versions. So tweak them liberally when debugging ACPI
issues with Windows.

ACPI Support Status

Advanced Configuration and Power Interface (ACPI [http://www.acpi.info]) aims to establish
industry-standard interfaces enabling OS-directed configuration, power
management, and thermal management of mobile, desktop, and server platforms.

Linux can boot without ACPI with “acpi=off” command line parameter, but
with ACPI the kernel gains the capabilities to handle power management.
For Windows, ACPI is a must-have firmware feature since Windows Vista.
CONFIG_GENERATE_ACPI_TABLE is the config option to turn on ACPI support in
U-Boot. This requires Intel ACPI compiler to be installed on your host to
compile ACPI DSDT table written in ASL format to AML format. You can get
the compiler via “apt-get install iasl” if you are on Ubuntu or download
the source from https://www.acpica.org/downloads to compile one by yourself.

Current ACPI support in U-Boot is basically complete. More optional features
can be added in the future. The status as of today is:

	Support generating RSDT, XSDT, FACS, FADT, MADT, MCFG tables.

	Support one static DSDT table only, compiled by Intel ACPI compiler.

	Support S0/S3/S4/S5, reboot and shutdown from OS.

	Support booting a pre-installed Ubuntu distribution via ‘zboot’ command.

	Support installing and booting Ubuntu 14.04 (or above) from U-Boot with
the help of SeaBIOS using legacy interface (non-UEFI mode).

	Support installing and booting Windows 8.1/10 from U-Boot with the help
of SeaBIOS using legacy interface (non-UEFI mode).

	Support ACPI interrupts with SCI only.

Features that are optional:

	Dynamic AML bytecodes insertion at run-time. We may need this to support
SSDT table generation and DSDT fix up.

	SMI support. Since U-Boot is a modern bootloader, we don’t want to bring
those legacy stuff into U-Boot. ACPI spec allows a system that does not
support SMI (a legacy-free system).

ACPI was initially enabled on BayTrail based boards. Testing was done by booting
a pre-installed Ubuntu 14.04 from a SATA drive. Installing Ubuntu 14.04 and
Windows 8.1/10 to a SATA drive and booting from there is also tested. Most
devices seem to work correctly and the board can respond a reboot/shutdown
command from the OS.

For other platform boards, ACPI support status can be checked by examining their
board defconfig files to see if CONFIG_GENERATE_ACPI_TABLE is set to y.

The S3 sleeping state is a low wake latency sleeping state defined by ACPI
spec where all system context is lost except system memory. To test S3 resume
with a Linux kernel, simply run “echo mem > /sys/power/state” and kernel will
put the board to S3 state where the power is off. So when the power button is
pressed again, U-Boot runs as it does in cold boot and detects the sleeping
state via ACPI register to see if it is S3, if yes it means we are waking up.
U-Boot is responsible for restoring the machine state as it is before sleep.
When everything is done, U-Boot finds out the wakeup vector provided by OSes
and jump there. To determine whether ACPI S3 resume is supported, check to
see if CONFIG_HAVE_ACPI_RESUME is set for that specific board.

Note for testing S3 resume with Windows, correct graphics driver must be
installed for your platform, otherwise you won’t find “Sleep” option in
the “Power” submenu from the Windows start menu.

EFI Support

U-Boot supports booting as a 32-bit or 64-bit EFI payload, e.g. with UEFI.
This is enabled with CONFIG_EFI_STUB to boot from both 32-bit and 64-bit
UEFI BIOS. U-Boot can also run as an EFI application, with CONFIG_EFI_APP.
The CONFIG_EFI_LOADER option, where U-Boot provides an EFI environment to
the kernel (i.e. replaces UEFI completely but provides the same EFI run-time
services) is supported too. For example, we can even use ‘bootefi’ command
to load a ‘u-boot-payload.efi’, see below test logs on QEMU.

=> load ide 0 3000000 u-boot-payload.efi
489787 bytes read in 138 ms (3.4 MiB/s)
=> bootefi 3000000
Scanning disk ide.blk#0...
Found 2 disks
WARNING: booting without device tree
Starting EFI application at 03000000 ...
U-Boot EFI Payload

U-Boot 2018.07-rc2 (Jun 23 2018 - 17:12:58 +0800)

CPU: x86_64, vendor AMD, device 663h
DRAM: 2 GiB
MMC:
Video: 1024x768x32
Model: EFI x86 Payload
Net: e1000: 52:54:00:12:34:56

Warning: e1000#0 using MAC address from ROM
eth0: e1000#0
No controllers found
Hit any key to stop autoboot: 0

See U-Boot on EFI and UEFI on U-Boot for details of
EFI support in U-Boot.

TODO List

	Audio

	Chrome OS verified boot

Xtensa

Xtensa Architecture and Diamond Cores

Xtensa is a configurable processor architecture from Tensilica, Inc.
Diamond Cores are pre-configured instances available for license and
SoC cores in the same manner as ARM, MIPS, etc.

Xtensa licensees create their own Xtensa cores with selected features
and custom instructions, registers and co-processors. The custom core
is configured with Tensilica tools and built with Tensilica’s Xtensa
Processor Generator.

There are an effectively infinite number of CPUs in the Xtensa
architecture family. It is, however, not feasible to support individual
Xtensa CPUs in U-Boot. Therefore, there is only a single ‘xtensa’ CPU
in the cpu tree of U-Boot.

In the same manner as the Linux port to Xtensa, U-Boot adapts to an
individual Xtensa core configuration using a set of macros provided with
the particular core. This is part of what is known as the hardware
abstraction layer (HAL). For the purpose of U-Boot, the HAL consists only
of a few header files. These provide CPP macros that customize sources,
Makefiles, and the linker script.

Adding support for an additional processor configuration

The header files for one particular processor configuration are inside
a variant-specific directory located in the arch/xtensa/include/asm
directory. The name of that directory starts with ‘arch-‘ followed by
the name for the processor configuration, for example, arch-dc233c for
the Diamond DC233 processor.

	core.h:

	Definitions for the core itself.

The following files are part of the overlay but not used by U-Boot.

	tie.h:

	Co-processors and custom extensions defined in the Tensilica Instruction
Extension (TIE) language.

	tie-asm.h:

	Assembly macros to access custom-defined registers and states.

Global Data Pointer, Exported Function Stubs, and the ABI

To support standalone applications launched with the “go” command,
U-Boot provides a jump table of entrypoints to exported functions
(grep for EXPORT_FUNC). The implementation for Xtensa depends on
which ABI (or function calling convention) is used.

Windowed ABI presents unique difficulties with the approach based on
keeping global data pointer in dedicated register. Because the register
window rotates during a call, there is no register that is constantly
available for the gd pointer. Therefore, on xtensa gd is a simple
global variable. Another difficulty arises from the requirement to have
an ‘entry’ at the beginning of a function, which rotates the register
file and reserves a stack frame. This is an integral part of the
windowed ABI implemented in hardware. It makes using a jump table to an
arbitrary (separately compiled) function a bit tricky. Use of a simple
wrapper is also very tedious due to the need to move all possible
register arguments and adjust the stack to handle arguments that cannot
be passed in registers. The most efficient approach is to have the jump
table perform the ‘entry’ so as to pretend it’s the start of the real
function. This requires decoding the target function’s ‘entry’
instruction to determine the stack frame size, and adjusting the stack
pointer accordingly, then jumping into the target function just after
the ‘entry’. Decoding depends on the processor’s endianness so uses the
HAL. The implementation (12 instructions) is in examples/stubs.c.

Access to Invalid Memory Addresses

U-Boot does not check if memory addresses given as arguments to commands
such as “md” are valid. There are two possible types of invalid
addresses: an area of physical address space may not be mapped to RAM
or peripherals, or in the presence of MMU an area of virtual address
space may not be mapped to physical addresses.

Accessing first type of invalid addresses may result in hardware lockup,
reading of meaningless data, written data being ignored or an exception,
depending on the CPU wiring to the system. Accessing second type of
invalid addresses always ends with an exception.

U-Boot for Xtensa provides a special memory exception handler that
reports such access attempts and resets the board.

Board-specific doc

	Andes Tech
	ADP-AG101P

	AX25-AE350

	Atmel
	AT91 Evaluation kits

	Coreboot
	Coreboot

	Emulation
	QEMU ARM

	QEMU MIPS

	QEMU RISC-V

	QEMU x86

	Freescale
	B4860QDS

	Google
	Chromebook Coral

	Chromebook Link

	Chromebook Samus

	Intel
	Bayley Bay CRB

	Cherry Hill CRB

	Cougar Canyon 2 CRB

	Crown Bay CRB

	Edison

	Galileo

	Minnowboard MAX

	Slim Bootloader

	Renesas
	R0P7752C00000RZ board

	SH7753 EVB board

	Rockchip
	ROCKCHIP

	SiFive
	HiFive Unleashed

	STMicroelectronics
	STM32MP15x boards

	Toradex
	Apalis iMX8QM V1.0B Module

	Colibri iMX7

	Colibri iMX8QXP V1.0B Module

	Verdin iMX8M Mini Module

	Xilinx
	U-Boot device tree bindings

	ZYNQ

Andes Tech

	ADP-AG101P
	AG101P SoC

	Configurations

	Build and boot steps

	Burn U-Boot to SPI ROM

	AX25-AE350
	AX25 Features

	Configurations

	Build and boot steps

	Steps

	Messages of U-Boot boot on AE350 board

	Boot bbl and riscv-linux via U-Boot on QEMU

	Running U-Boot SPL

	How to build U-Boot SPL

	How to build U-Boot SPL booting from RAM

	How to build U-Boot SPL booting from ROM

	Messages of U-Boot SPL boots Kernel on AE350 board

ADP-AG101P

ADP-AG101P is the SoC with AG101 hardcore CPU.

AG101P SoC

AG101P is the mainline SoC produced by Andes Technology using N1213 CPU core
with FPU and DDR contoller support.
AG101P has integrated both AHB and APB bus and many periphals for application
and product development.

Configurations

	CONFIG_MEM_REMAP:

	Doing memory remap is essential for preparing some non-OS or RTOS
applications.

	CONFIG_SKIP_LOWLEVEL_INIT:

	If you want to boot this system from SPI ROM and bypass e-bios (the
other boot loader on ROM). You should undefine CONFIG_SKIP_LOWLEVEL_INIT
in “include/configs/adp-ag101p.h”.

Build and boot steps

Build:

	Prepare the toolchains and make sure the $PATH to toolchains is correct.

	Use make adp-ag101p_defconfig in u-boot root to build the image.

Burn U-Boot to SPI ROM

This section will be added later.

AX25-AE350

AE350 is the mainline SoC produced by Andes Technology using AX25 CPU core
base on RISC-V architecture.

AE350 has integrated both AHB and APB bus and many periphals for application
and product development.

AX25-AE350 is the SoC with AE350 hardcore CPU.

AX25 is Andes CPU IP to adopt RISC-V architecture.

AX25 Features

	CPU Core

	
	5-stage in-order execution pipeline

	
	Hardware Multiplier

	
	radix-2/radix-4/radix-16/radix-256/fast

	Hardware Divider

	Optional branch prediction

	Machine mode and optional user mode

	Optional performance monitoring

	ISA

	
	RV64I base integer instructions

	RVC for 16-bit compressed instructions

	RVM for multiplication and division instructions

	Memory subsystem

	
	
	I & D local memory

	
	Size: 4KB to 16MB

	
	Memory subsyetem soft-error protection

	
	Protection scheme: parity-checking or error-checking-and-correction (ECC)

	Automatic hardware error correction

	Bus

	
	
	Interface Protocol

	
	Synchronous AHB (32-bit/64-bit data-width), or

	Synchronous AXI4 (64-bit data-width)

	Power management

	
	Wait for interrupt (WFI) mode

	Debug

	
	Configurable number of breakpoints: 2/4/8

	
	External Debug Module

	
	AHB slave port

	External JTAG debug transport module

	Platform Level Interrupt Controller (PLIC)

	
	AHB slave port

	Configurable number of interrupts: 1-1023

	Configurable number of interrupt priorities: 3/7/15/63/127/255

	Configurable number of targets: 1-16

	Preempted interrupt priority stack

Configurations

CONFIG_SKIP_LOWLEVEL_INIT:

If you want to boot this system from SPI ROM and bypass e-bios (the
other boot loader on ROM). You should undefine CONFIG_SKIP_LOWLEVEL_INIT
in “include/configs/ax25-ae350.h”.

Build and boot steps

Build:

	Prepare the toolchains and make sure the $PATH to toolchains is correct.

	Use make ae350_rv[32|64]_defconfig in u-boot root to build the image for
32 or 64 bit.

Verification:

	startup

	relocation

	timer driver

	uart driver

	mac driver

	mmc driver

	spi driver

Steps

	Define CONFIG_SKIP_LOWLEVEL_INIT to build u-boot which is loaded via gdb from ram.

	Undefine CONFIG_SKIP_LOWLEVEL_INIT to build u-boot which is booted from spi rom.

	Ping a server by mac driver

	Scan sd card and copy u-boot image which is booted from flash to ram by sd driver.

	Burn this u-boot image to spi rom by spi driver

	Re-boot u-boot from spi flash with power off and power on.

Messages of U-Boot boot on AE350 board

U-Boot 2018.01-rc2-00033-g824f89a (Dec 21 2017 - 16:51:26 +0800)

DRAM: 1 GiB
MMC: mmc@f0e00000: 0
SF: Detected mx25u1635e with page size 256 Bytes, erase size 4 KiB, total 2 MiB
In: serial@f0300000
Out: serial@f0300000
Err: serial@f0300000
Net:
Warning: mac@e0100000 (eth0) using random MAC address - be:dd:d7:e4:e8:10
eth0: mac@e0100000

RISC-V # version
U-Boot 2018.01-rc2-00033-gb265b91-dirty (Dec 22 2017 - 13:54:21 +0800)

riscv32-unknown-linux-gnu-gcc (GCC) 7.2.0
GNU ld (GNU Binutils) 2.29

RISC-V # setenv ipaddr 10.0.4.200 ;
RISC-V # setenv serverip 10.0.4.97 ;
RISC-V # ping 10.0.4.97 ;
Using mac@e0100000 device
host 10.0.4.97 is alive

RISC-V # mmc rescan
RISC-V # fatls mmc 0:1
 318907 u-boot-ae350-64.bin
 1252 hello_world_ae350_32.bin
 328787 u-boot-ae350-32.bin

3 file(s), 0 dir(s)

RISC-V # sf probe 0:0 50000000 0
SF: Detected mx25u1635e with page size 256 Bytes, erase size 4 KiB, total 2 MiB

RISC-V # sf test 0x100000 0x1000
SPI flash test:
0 erase: 36 ticks, 111 KiB/s 0.888 Mbps
1 check: 29 ticks, 137 KiB/s 1.096 Mbps
2 write: 40 ticks, 100 KiB/s 0.800 Mbps
3 read: 20 ticks, 200 KiB/s 1.600 Mbps
Test passed
0 erase: 36 ticks, 111 KiB/s 0.888 Mbps
1 check: 29 ticks, 137 KiB/s 1.096 Mbps
2 write: 40 ticks, 100 KiB/s 0.800 Mbps
3 read: 20 ticks, 200 KiB/s 1.600 Mbps

RISC-V # fatload mmc 0:1 0x600000 u-boot-ae350-32.bin
reading u-boot-ae350-32.bin
328787 bytes read in 324 ms (990.2 KiB/s)

RISC-V # sf erase 0x0 0x51000
SF: 331776 bytes @ 0x0 Erased: OK

RISC-V # sf write 0x600000 0x0 0x50453
device 0 offset 0x0, size 0x50453
SF: 328787 bytes @ 0x0 Written: OK

RISC-V # crc32 0x600000 0x50453
crc32 for 00600000 ... 00650452 ==> 692dc44a

RISC-V # crc32 0x80000000 0x50453
crc32 for 80000000 ... 80050452 ==> 692dc44a
RISC-V #

*** power-off and power-on, this U-Boot is booted from spi flash ***

U-Boot 2018.01-rc2-00032-gf67dd47-dirty (Dec 21 2017 - 13:56:03 +0800)

DRAM: 1 GiB
MMC: mmc@f0e00000: 0
SF: Detected mx25u1635e with page size 256 Bytes, erase size 4 KiB, total 2 MiB
In: serial@f0300000
Out: serial@f0300000
Err: serial@f0300000
Net:
Warning: mac@e0100000 (eth0) using random MAC address - ee:4c:58:29:32:f5
eth0: mac@e0100000
RISC-V #

Boot bbl and riscv-linux via U-Boot on QEMU

	Build riscv-linux

	Build bbl and riscv-linux with –with-payload

	Prepare ae350.dtb

	Creating OS-kernel images

./mkimage -A riscv -O linux -T kernel -C none -a 0x0000 -e 0x0000 -d bbl.bin bootmImage-bbl.bin
Image Name:
Created: Tue Mar 13 10:06:42 2018
Image Type: RISC-V Linux Kernel Image (uncompressed)
Data Size: 17901204 Bytes = 17481.64 KiB = 17.07 MiB
Load Address: 00000000
Entry Point: 00000000

	Copy bootmImage-bbl.bin and ae350.dtb to qemu sd card image

	Message of booting riscv-linux from bbl via u-boot on qemu

U-Boot 2018.03-rc4-00031-g2631273 (Mar 13 2018 - 15:02:55 +0800)

DRAM: 1 GiB
main-loop: WARNING: I/O thread spun for 1000 iterations
MMC: mmc@f0e00000: 0
Loading Environment from SPI Flash... *** Warning - spi_flash_probe_bus_cs() failed, using default environment

Failed (-22)
In: serial@f0300000
Out: serial@f0300000
Err: serial@f0300000
Net:
Warning: mac@e0100000 (eth0) using random MAC address - 02:00:00:00:00:00
eth0: mac@e0100000
RISC-V # mmc rescan
RISC-V # mmc part

Partition Map for MMC device 0 -- Partition Type: DOS

Part Start Sector Num Sectors UUID Type
RISC-V # fatls mmc 0:0
 17901268 bootmImage-bbl.bin
 1954 ae2xx.dtb

2 file(s), 0 dir(s)

RISC-V # fatload mmc 0:0 0x00600000 bootmImage-bbl.bin
17901268 bytes read in 4642 ms (3.7 MiB/s)
RISC-V # fatload mmc 0:0 0x2000000 ae350.dtb
1954 bytes read in 1 ms (1.9 MiB/s)
RISC-V # setenv bootm_size 0x2000000
RISC-V # setenv fdt_high 0x1f00000
RISC-V # bootm 0x00600000 - 0x2000000
Booting kernel from Legacy Image at 00600000 ...
 Image Name:
 Image Type: RISC-V Linux Kernel Image (uncompressed)
 Data Size: 17901204 Bytes = 17.1 MiB
 Load Address: 00000000
 Entry Point: 00000000
 Verifying Checksum ... OK
Flattened Device Tree blob at 02000000
 Booting using the fdt blob at 0x2000000
 Loading Kernel Image ... OK
 Loading Device Tree to 0000000001efc000, end 0000000001eff7a1 ... OK
[0.000000] OF: fdt: Ignoring memory range 0x0 - 0x200000
[0.000000] Linux version 4.14.0-00046-gf3e439f-dirty (rick@atcsqa06) (gcc version 7.1.1 20170509 (GCC)) #1 Tue Jan 9 16:34:25 CST 2018
[0.000000] bootconsole [early0] enabled
[0.000000] Initial ramdisk at: 0xffffffe000016a98 (12267008 bytes)
[0.000000] Zone ranges:
[0.000000] DMA [mem 0x0000000000200000-0x000000007fffffff]
[0.000000] Normal empty
[0.000000] Movable zone start for each node
[0.000000] Early memory node ranges
[0.000000] node 0: [mem 0x0000000000200000-0x000000007fffffff]
[0.000000] Initmem setup node 0 [mem 0x0000000000200000-0x000000007fffffff]
[0.000000] elf_hwcap is 0x112d
[0.000000] random: fast init done
[0.000000] Built 1 zonelists, mobility grouping on. Total pages: 516615
[0.000000] Kernel command line: console=ttyS0,38400n8 earlyprintk=uart8250-32bit,0xf0300000 debug loglevel=7
[0.000000] PID hash table entries: 4096 (order: 3, 32768 bytes)
[0.000000] Dentry cache hash table entries: 262144 (order: 9, 2097152 bytes)
[0.000000] Inode-cache hash table entries: 131072 (order: 8, 1048576 bytes)
[0.000000] Sorting __ex_table...
[0.000000] Memory: 2047832K/2095104K available (1856K kernel code, 204K rwdata, 532K rodata, 12076K init, 756K bss, 47272K reserved, 0K cma-reserved)
[0.000000] SLUB: HWalign=64, Order=0-3, MinObjects=0, CPUs=1, Nodes=1
[0.000000] NR_IRQS: 0, nr_irqs: 0, preallocated irqs: 0
[0.000000] riscv,cpu_intc,0: 64 local interrupts mapped
[0.000000] riscv,plic0,e4000000: mapped 31 interrupts to 1/2 handlers
[0.000000] clocksource: riscv_clocksource: mask: 0xffffffffffffffff max_cycles: 0x24e6a1710, max_idle_ns: 440795202120 ns
[0.000000] Calibrating delay loop (skipped), value calculated using timer frequency.. 20.00 BogoMIPS (lpj=40000)
[0.000000] pid_max: default: 32768 minimum: 301
[0.004000] Mount-cache hash table entries: 4096 (order: 3, 32768 bytes)
[0.004000] Mountpoint-cache hash table entries: 4096 (order: 3, 32768 bytes)
[0.056000] devtmpfs: initialized
[0.060000] clocksource: jiffies: mask: 0xffffffff max_cycles: 0xffffffff, max_idle_ns: 7645041785100000 ns
[0.064000] futex hash table entries: 256 (order: 0, 6144 bytes)
[0.068000] NET: Registered protocol family 16
[0.080000] vgaarb: loaded
[0.084000] clocksource: Switched to clocksource riscv_clocksource
[0.088000] NET: Registered protocol family 2
[0.092000] TCP established hash table entries: 16384 (order: 5, 131072 bytes)
[0.096000] TCP bind hash table entries: 16384 (order: 5, 131072 bytes)
[0.096000] TCP: Hash tables configured (established 16384 bind 16384)
[0.100000] UDP hash table entries: 1024 (order: 3, 32768 bytes)
[0.100000] UDP-Lite hash table entries: 1024 (order: 3, 32768 bytes)
[0.104000] NET: Registered protocol family 1
[0.616000] Unpacking initramfs...
[1.220000] workingset: timestamp_bits=62 max_order=19 bucket_order=0
[1.244000] io scheduler noop registered
[1.244000] io scheduler cfq registered (default)
[1.244000] io scheduler mq-deadline registered
[1.248000] io scheduler kyber registered
[1.360000] Serial: 8250/16550 driver, 4 ports, IRQ sharing disabled
[1.368000] console [ttyS0] disabled
[1.372000] f0300000.serial: ttyS0 at MMIO 0xf0300020 (irq = 10, base_baud = 1228800) is a 16550A
[1.392000] console [ttyS0] enabled
[1.392000] ftmac100: Loading version 0.2 ...
[1.396000] ftmac100 e0100000.mac eth0: irq 8, mapped at ffffffd002005000
[1.400000] ftmac100 e0100000.mac eth0: generated random MAC address 6e:ac:c3:92:36:c0
[1.404000] IR NEC protocol handler initialized
[1.404000] IR RC5(x/sz) protocol handler initialized
[1.404000] IR RC6 protocol handler initialized
[1.404000] IR JVC protocol handler initialized
[1.408000] IR Sony protocol handler initialized
[1.408000] IR SANYO protocol handler initialized
[1.408000] IR Sharp protocol handler initialized
[1.408000] IR MCE Keyboard/mouse protocol handler initialized
[1.412000] IR XMP protocol handler initialized
[1.456000] ftsdc010 f0e00000.mmc: mmc0 - using hw SDIO IRQ
[1.464000] bootconsole [early0] uses init memory and must be disabled even before the real one is ready
[1.464000] bootconsole [early0] disabled
[1.508000] Freeing unused kernel memory: 12076K
[1.512000] This architecture does not have kernel memory protection.
[1.520000] mmc0: new SD card at address 4567
[1.524000] mmcblk0: mmc0:4567 QEMU! 20.0 MiB
[1.844000] mmcblk0:
Wed Dec 1 10:00:00 CST 2010
/ #

Running U-Boot SPL

The U-Boot SPL will boot in M mode and load the FIT image which include
OpenSBI and U-Boot proper images. After loading progress, it will jump
to OpenSBI first and then U-Boot proper which will run in S mode.

How to build U-Boot SPL

Before building U-Boot SPL, OpenSBI must be build first. OpenSBI can be
cloned and build for AE350 as below:

git clone https://github.com/riscv/opensbi.git
cd opensbi
make PLATFORM=andes/ae350

Copy OpenSBI FW_DYNAMIC image (buildplatformandesae350firmwarefw_dynamic.bin)
into U-Boot root directory

How to build U-Boot SPL booting from RAM

With ae350_rv[32|64]_spl_defconfigs:

U-Boot SPL will be loaded by gdb or FSBL and runs in RAM in machine mode
and then load FIT image from RAM device on AE350.

How to build U-Boot SPL booting from ROM

With ae350_rv[32|64]_spl_xip_defconfigs:

U-Boot SPL can be burned into SPI flash and run in flash in machine mode
and then load FIT image from SPI flash or MMC device on AE350.

Messages of U-Boot SPL boots Kernel on AE350 board

U-Boot SPL 2020.01-rc1-00292-g67a3313-dirty (Nov 14 2019 - 11:26:21 +0800)
Trying to boot from RAM

OpenSBI v0.5-1-gdd8ef28 (Nov 14 2019 11:08:39)
 ____ _____ ____ _____
 / __ \ / ____| _ _ _|
 | | | |_ __ ___ _ __ | (___ | |_) || |
 | | | | '_ \ / _ \ '_ \ ___ \| _ < | |
 | |__| | |_) | __/ | | |____) | |_) || |_
 ____/| .__/ ___|_| |_|_____/|____/_____|
 | |
 |_|

Platform Name : Andes AE350
Platform HART Features : RV64ACIMSUX
Platform Max HARTs : 4
Current Hart : 0
Firmware Base : 0x0
Firmware Size : 84 KB
Runtime SBI Version : 0.2

PMP0: 0x0000000000000000-0x000000000001ffff (A)
PMP1: 0x0000000000000000-0x00000001ffffffff (A,R,W,X)

U-Boot 2020.01-rc1-00292-g67a3313-dirty (Nov 14 2019 - 11:26:21 +0800)

DRAM: 1 GiB
Flash: 64 MiB
MMC: mmc@f0e00000: 0
Loading Environment from SPI Flash... SF: Detected mx25u1635e with page size 256 Bytes, erase size 4 KiB, total 2 MiB
OK
In: serial@f0300000
Out: serial@f0300000
Err: serial@f0300000
Net: no alias for ethernet0

Warning: mac@e0100000 (eth0) using random MAC address - a2:ae:93:7b:cc:8f
eth0: mac@e0100000
Hit any key to stop autoboot: 0
6455 bytes read in 31 ms (203.1 KiB/s)
20421684 bytes read in 8647 ms (2.3 MiB/s)
Booting kernel from Legacy Image at 00600000 ...
 Image Name:
 Image Type: RISC-V Linux Kernel Image (uncompressed)
 Data Size: 20421620 Bytes = 19.5 MiB
 Load Address: 00200000
 Entry Point: 00200000
 Verifying Checksum ... OK
Flattened Device Tree blob at 20000000
 Booting using the fdt blob at 0x20000000
 Loading Kernel Image
 Loading Device Tree to 000000001effb000, end 000000001efff936 ... OK

Starting kernel ...

OF: fdt: Ignoring memory range 0x0 - 0x200000
Linux version 4.17.0-00253-g49136e10bcb2 (sqa@atcsqa07) (gcc version 7.3.0 (2019-04-06_nds64le-linux-glibc-v5_experimental)) #1 SMP PREEMPT Sat Apr 6 23:41:49 CST 2019
bootconsole [early0] enabled
Initial ramdisk at: 0x (ptrval) (13665712 bytes)
Zone ranges:
 DMA32 [mem 0x0000000000200000-0x000000003fffffff]
 Normal empty
Movable zone start for each node
Early memory node ranges
 node 0: [mem 0x0000000000200000-0x000000003fffffff]
Initmem setup node 0 [mem 0x0000000000200000-0x000000003fffffff]
software IO TLB [mem 0x3b1f8000-0x3f1f8000] (64MB) mapped at [(ptrval)- (ptrval)]
elf_platform is rv64i2p0m2p0a2p0c2p0xv5-0p0
compatible privileged spec version 1.10
percpu: Embedded 16 pages/cpu @ (ptrval) s28184 r8192 d29160 u65536
Built 1 zonelists, mobility grouping on. Total pages: 258055
Kernel command line: console=ttyS0,38400n8 debug loglevel=7
log_buf_len individual max cpu contribution: 4096 bytes
log_buf_len total cpu_extra contributions: 12288 bytes
log_buf_len min size: 16384 bytes
log_buf_len: 32768 bytes
early log buf free: 14608(89%)
Dentry cache hash table entries: 131072 (order: 8, 1048576 bytes)
Inode-cache hash table entries: 65536 (order: 7, 524288 bytes)
Sorting __ex_table...
Memory: 944428K/1046528K available (3979K kernel code, 246K rwdata, 1490K rodata, 13523K init, 688K bss, 102100K reserved, 0K cma-reserved)
SLUB: HWalign=64, Order=0-3, MinObjects=0, CPUs=4, Nodes=1
Preemptible hierarchical RCU implementation.
 Tasks RCU enabled.
NR_IRQS: 72, nr_irqs: 72, preallocated irqs: 0
riscv,cpu_intc,0: 64 local interrupts mapped
riscv,cpu_intc,1: 64 local interrupts mapped
riscv,cpu_intc,2: 64 local interrupts mapped
riscv,cpu_intc,3: 64 local interrupts mapped
riscv,plic0,e4000000: mapped 71 interrupts to 8/8 handlers
clocksource: riscv_clocksource: mask: 0xffffffffffffffff max_cycles: 0x1bacf917bf, max_idle_ns: 881590412290 ns
sched_clock: 64 bits at 60MHz, resolution 16ns, wraps every 4398046511098ns
Console: colour dummy device 40x30
Calibrating delay loop (skipped), value calculated using timer frequency.. 120.00 BogoMIPS (lpj=600000)
pid_max: default: 32768 minimum: 301
Mount-cache hash table entries: 2048 (order: 2, 16384 bytes)
Mountpoint-cache hash table entries: 2048 (order: 2, 16384 bytes)
Hierarchical SRCU implementation.
smp: Bringing up secondary CPUs ...
CPU0: online
CPU2: online
CPU3: online
smp: Brought up 1 node, 4 CPUs
devtmpfs: initialized
random: get_random_u32 called from bucket_table_alloc+0x198/0x1d8 with crng_init=0
clocksource: jiffies: mask: 0xffffffff max_cycles: 0xffffffff, max_idle_ns: 19112604462750000 ns
futex hash table entries: 1024 (order: 4, 65536 bytes)
NET: Registered protocol family 16
Advanced Linux Sound Architecture Driver Initialized.
clocksource: Switched to clocksource riscv_clocksource
NET: Registered protocol family 2
tcp_listen_portaddr_hash hash table entries: 512 (order: 1, 8192 bytes)
TCP established hash table entries: 8192 (order: 4, 65536 bytes)
TCP bind hash table entries: 8192 (order: 5, 131072 bytes)
TCP: Hash tables configured (established 8192 bind 8192)
UDP hash table entries: 512 (order: 2, 16384 bytes)
UDP-Lite hash table entries: 512 (order: 2, 16384 bytes)
NET: Registered protocol family 1
RPC: Registered named UNIX socket transport module.
RPC: Registered udp transport module.
RPC: Registered tcp transport module.
RPC: Registered tcp NFSv4.1 backchannel transport module.
Unpacking initramfs...
workingset: timestamp_bits=62 max_order=18 bucket_order=0
NFS: Registering the id_resolver key type
Key type id_resolver registered
Key type id_legacy registered
nfs4filelayout_init: NFSv4 File Layout Driver Registering...
io scheduler noop registered
io scheduler cfq registered (default)
io scheduler mq-deadline registered
io scheduler kyber registered
Console: switching to colour frame buffer device 40x30
Serial: 8250/16550 driver, 4 ports, IRQ sharing disabled
console [ttyS0] disabled
f0300000.serial: ttyS0 at MMIO 0xf0300020 (irq = 20, base_baud = 1228800) is a 16550A
console [ttyS0] enabled
console [ttyS0] enabled
bootconsole [early0] disabled
bootconsole [early0] disabled
loop: module loaded
tun: Universal TUN/TAP device driver, 1.6
ftmac100: Loading version 0.2 ...
ftmac100 e0100000.mac eth0: irq 21, mapped at (ptrval)
ftmac100 e0100000.mac eth0: generated random MAC address 4e:fd:bd:f3:04:fc
ftsdc010 f0e00000.mmc: mmc0 - using hw SDIO IRQ
mmc0: new SDHC card at address d555
ftssp010 card registered!
mmcblk0: mmc0:d555 SD04G 3.79 GiB
NET: Registered protocol family 10
 mmcblk0: p1
Segment Routing with IPv6
sit: IPv6, IPv4 and MPLS over IPv4 tunneling driver
NET: Registered protocol family 17
NET: Registered protocol family 15
ALSA device list:
 #0: ftssp_ac97 controller
Freeing unused kernel memory: 13520K
This architecture does not have kernel memory protection.
Sysinit starting
Sat Apr 6 23:33:53 CST 2019
nfs4flexfilelayout_init: NFSv4 Flexfile Layout Driver Registering...

~ #

Atmel

	AT91 Evaluation kits
	Board mapping & boot media

	NAND partition table

	Watchdog support

AT91 Evaluation kits

Board mapping & boot media

AT91SAM9260EK, AT91SAM9G20EK & AT91SAM9XEEK

Memory map:

0x20000000 - 23FFFFFF SDRAM (64 MB)
0xC0000000 - Cxxxxxxx Atmel Dataflash card (J13)
0xD0000000 - D07FFFFF Soldered Atmel Dataflash (AT45DB642)

Environment variables

U-Boot environment variables can be stored at different places:

	Dataflash on SPI chip select 1 (default)

	Dataflash on SPI chip select 0 (dataflash card)

	Nand flash

You can choose your storage location at config step (here for at91sam9260ek):

make at91sam9260ek_nandflash_config - use nand flash
make at91sam9260ek_dataflash_cs0_config - use data flash (spi cs0)
make at91sam9260ek_dataflash_cs1_config - use data flash (spi cs1)

AT91SAM9261EK, AT91SAM9G10EK

Memory map:

0x20000000 - 23FFFFFF SDRAM (64 MB)
0xC0000000 - C07FFFFF Soldered Atmel Dataflash (AT45DB642)
0xD0000000 - Dxxxxxxx Atmel Dataflash card (J22)

Environment variables

U-Boot environment variables can be stored at different places:

	Dataflash on SPI chip select 0 (default)

	Dataflash on SPI chip select 3 (dataflash card)

	Nand flash

You can choose your storage location at config step (here for at91sam9260ek):

make at91sam9261ek_nandflash_config - use nand flash
make at91sam9261ek_dataflash_cs0_config - use data flash (spi cs0)
make at91sam9261ek_dataflash_cs3_config - use data flash (spi cs3)

AT91SAM9263EK

Memory map:

0x20000000 - 23FFFFFF SDRAM (64 MB)
0xC0000000 - Cxxxxxxx Atmel Dataflash card (J9)

Environment variables

U-Boot environment variables can be stored at different places:

	Dataflash on SPI chip select 0 (dataflash card)

	Nand flash

	Nor flash (not populate by default)

You can choose your storage location at config step (here for at91sam9260ek):

make at91sam9263ek_nandflash_config - use nand flash
make at91sam9263ek_dataflash_cs0_config - use data flash (spi cs0)
make at91sam9263ek_norflash_config - use nor flash

You can choose to boot directly from U-Boot at config step:

make at91sam9263ek_norflash_boot_config - boot from nor flash

AT91SAM9M10G45EK

Memory map:

0x70000000 - 77FFFFFF SDRAM (128 MB)

Environment variables

U-Boot environment variables can be stored at different places:

	Nand flash

You can choose your storage location at config step (here for at91sam9m10g45ek):

make at91sam9m10g45ek_nandflash_config - use nand flash

AT91SAM9RLEK

Memory map:

0x20000000 - 23FFFFFF SDRAM (64 MB)
0xC0000000 - C07FFFFF Soldered Atmel Dataflash (AT45DB642)

Environment variables

U-Boot environment variables can be stored at different places:

	Dataflash on SPI chip select 0

	Nand flash.

You can choose your storage location at config step (here for at91sam9rlek):

make at91sam9rlek_nandflash_config - use nand flash

AT91SAM9N12EK, AT91SAM9X5EK

Memory map:

0x20000000 - 27FFFFFF SDRAM (128 MB)

Environment variables

U-Boot environment variables can be stored at different places:

	Nand flash

	SD/MMC card

	Serialflash/Dataflash on SPI chip select 0

You can choose your storage location at config step (here for at91sam9x5ek):

make at91sam9x5ek_dataflash_config - use data flash
make at91sam9x5ek_mmc_config - use sd/mmc card
make at91sam9x5ek_nandflash_config - use nand flash
make at91sam9x5ek_spiflash_config - use serial flash

SAMA5D3XEK

Memory map:

0x20000000 - 3FFFFFFF SDRAM (512 MB)

Environment variables

U-Boot environment variables can be stored at different places:

	Nand flash

	SD/MMC card

	Serialflash on SPI chip select 0

You can choose your storage location at config step (here for sama5d3xek):

make sama5d3xek_mmc_config - use SD/MMC card
make sama5d3xek_nandflash_config - use nand flash
make sama5d3xek_serialflash_config - use serial flash

NAND partition table

All the board support boot from NAND flash will use the following NAND
partition table:

0x00000000 - 0x0003FFFF bootstrap (256 KiB)
0x00040000 - 0x000BFFFF u-boot (512 KiB)
0x000C0000 - 0x000FFFFF env (256 KiB)
0x00100000 - 0x0013FFFF env_redundant (256 KiB)
0x00140000 - 0x0017FFFF spare (256 KiB)
0x00180000 - 0x001FFFFF dtb (512 KiB)
0x00200000 - 0x007FFFFF kernel (6 MiB)
0x00800000 - 0xxxxxxxxx rootfs (All left)

Watchdog support

For security reasons, the at91 watchdog is running at boot time and,
if deactivated, cannot be used anymore.
If you want to use the watchdog, you will need to keep it running in
your code (make sure not to disable it in AT91Bootstrap for instance).

In the U-Boot configuration, the AT91 watchdog support is enabled using
the CONFIG_WDT and CONFIG_WDT_AT91 options.

Coreboot

	Coreboot
	Build Instructions for U-Boot as coreboot payload

	Test with coreboot

Coreboot

Build Instructions for U-Boot as coreboot payload

Building U-Boot as a coreboot payload is just like building U-Boot for targets
on other architectures, like below:

$ make coreboot_defconfig
$ make all

Test with coreboot

For testing U-Boot as the coreboot payload, there are things that need be paid
attention to. coreboot supports loading an ELF executable and a 32-bit plain
binary, as well as other supported payloads. With the default configuration,
U-Boot is set up to use a separate Device Tree Blob (dtb). As of today, the
generated u-boot-dtb.bin needs to be packaged by the cbfstool utility (a tool
provided by coreboot) manually as coreboot’s ‘make menuconfig’ does not provide
this capability yet. The command is as follows:

in the coreboot root directory
$./build/util/cbfstool/cbfstool build/coreboot.rom add-flat-binary \
 -f u-boot-dtb.bin -n fallback/payload -c lzma -l 0x1110000 -e 0x1110000

Make sure 0x1110000 matches CONFIG_SYS_TEXT_BASE, which is the symbol address
of _x86boot_start (in arch/x86/cpu/start.S).

If you want to use ELF as the coreboot payload, change U-Boot configuration to
use CONFIG_OF_EMBED instead of CONFIG_OF_SEPARATE.

To enable video you must enable these options in coreboot:

	Set framebuffer graphics resolution (1280x1024 32k-color (1:5:5))

	Keep VESA framebuffer

At present it seems that for Minnowboard Max, coreboot does not pass through
the video information correctly (it always says the resolution is 0x0). This
works correctly for link though.

Emulation

	QEMU ARM
	Building U-Boot

	Running U-Boot

	QEMU MIPS
	Limitations & comments

	Notes for the Qemu MIPS port

	How to debug U-Boot

	QEMU RISC-V
	Building U-Boot

	Running U-Boot

	Running U-Boot SPL

	QEMU x86
	Build instructions for bare mode

	Test with QEMU for bare mode

QEMU ARM

QEMU for ARM supports a special ‘virt’ machine designed for emulation and
virtualization purposes. This document describes how to run U-Boot under it.
Both 32-bit ARM and AArch64 are supported.

The ‘virt’ platform provides the following as the basic functionality:

	A freely configurable amount of CPU cores

	U-Boot loaded and executing in the emulated flash at address 0x0

	A generated device tree blob placed at the start of RAM

	A freely configurable amount of RAM, described by the DTB

	A PL011 serial port, discoverable via the DTB

	An ARMv7/ARMv8 architected timer

	PSCI for rebooting the system

	A generic ECAM-based PCI host controller, discoverable via the DTB

Additionally, a number of optional peripherals can be added to the PCI bus.

Building U-Boot

Set the CROSS_COMPILE environment variable as usual, and run:

	For ARM:

make qemu_arm_defconfig
make

	For AArch64:

make qemu_arm64_defconfig
make

Running U-Boot

The minimal QEMU command line to get U-Boot up and running is:

	For ARM:

qemu-system-arm -machine virt -bios u-boot.bin

	For AArch64:

qemu-system-aarch64 -machine virt -cpu cortex-a57 -bios u-boot.bin

Note that for some odd reason qemu-system-aarch64 needs to be explicitly
told to use a 64-bit CPU or it will boot in 32-bit mode.

Additional persistent U-boot environment support can be added as follows:

	Create envstore.img using qemu-img:

qemu-img create -f raw envstore.img 64M

	Add a pflash drive parameter to the command line:

-drive if=pflash,format=raw,index=1,file=envstore.img

Additional peripherals that have been tested to work in both U-Boot and Linux
can be enabled with the following command line parameters:

	To add a Serial ATA disk via an Intel ICH9 AHCI controller, pass e.g.:

-drive if=none,file=disk.img,id=mydisk -device ich9-ahci,id=ahci -device ide-drive,drive=mydisk,bus=ahci.0

	To add an Intel E1000 network adapter, pass e.g.:

-netdev user,id=net0 -device e1000,netdev=net0

	To add an EHCI-compliant USB host controller, pass e.g.:

-device usb-ehci,id=ehci

	To add a NVMe disk, pass e.g.:

-drive if=none,file=disk.img,id=mydisk -device nvme,drive=mydisk,serial=foo

These have been tested in QEMU 2.9.0 but should work in at least 2.5.0 as well.

QEMU MIPS

Qemu is a full system emulator. See http://www.nongnu.org/qemu/

Limitations & comments

Supports the “-M mips” configuration of qemu: serial,NE2000,IDE.
Supports little and big endian as well as 32 bit and 64 bit.
Derived from au1x00 with a lot of things cut out.

Supports emulated flash (patch Jean-Christophe PLAGNIOL-VILLARD) with
recent qemu versions. When using emulated flash, launch with
-pflash <filename> and erase mips_bios.bin.

Notes for the Qemu MIPS port

Example usage

Using u-boot.bin as ROM (replaces Qemu monitor):

32 bit, big endian

make qemu_mips
qemu-system-mips -M mips -bios u-boot.bin -nographic

32 bit, little endian

make qemu_mipsel
qemu-system-mipsel -M mips -bios u-boot.bin -nographic

64 bit, big endian

make qemu_mips64
qemu-system-mips64 -cpu MIPS64R2-generic -M mips -bios u-boot.bin -nographic

64 bit, little endian

make qemu_mips64el
qemu-system-mips64el -cpu MIPS64R2-generic -M mips -bios u-boot.bin -nographic

or using u-boot.bin from emulated flash:

if you use a QEMU version after commit 4224

create image:
dd of=flash bs=1k count=4k if=/dev/zero
dd of=flash bs=1k conv=notrunc if=u-boot.bin
start it (see above):
qemu-system-mips[64][el] [-cpu MIPS64R2-generic] -M mips -pflash flash -nographic

Download kernel + initrd

On ftp://ftp.denx.de/pub/contrib/Jean-Christophe_Plagniol-Villard/qemu_mips/
you can downland:

#config to build the kernel
qemu_mips_defconfig
#patch to fix mips interrupt init on 2.6.24.y kernel
qemu_mips_kernel.patch
initrd.gz
vmlinux
vmlinux.bin
System.map

Generate uImage

tools/mkimage -A mips -O linux -T kernel -C gzip -a 0x80010000 -e 0x80245650 -n "Linux 2.6.24.y" -d vmlinux.bin.gz uImage

Copy uImage to Flash

dd if=uImage bs=1k conv=notrunc seek=224 of=flash

Generate Ide Disk

dd of=ide bs=1k count=100k if=/dev/zero

Create partion table
sudo sfdisk ide << EOF
label: dos
label-id: 0x6fe3a999
device: image
unit: sectors
image1 : start= 63, size= 32067, Id=83
image2 : start= 32130, size= 32130, Id=83
image3 : start= 64260, size= 4128705, Id=83
EOF

Copy to ide

dd if=uImage bs=512 conv=notrunc seek=63 of=ide

Generate ext2 on part 2 on Copy uImage and initrd.gz

Attached as loop device ide offset = 32130 * 512
sudo losetup -o 16450560 /dev/loop0 ide
Format as ext2 (arg2 : nb blocks)
sudo mkfs.ext2 /dev/loop0 16065
sudo losetup -d /dev/loop0
Mount and copy uImage and initrd.gz to it
sudo mount -o loop,offset=16450560 -t ext2 ide /mnt
sudo mkdir /mnt/boot
cp {initrd.gz,uImage} /mnt/boot/
Umount it
sudo umount /mnt

Set Environment

setenv rd_start 0x80800000
setenv rd_size 2663940
setenv kernel BFC38000
setenv oad_addr 80500000
setenv load_addr2 80F00000
setenv kernel_flash BFC38000
setenv load_addr_hello 80200000
setenv bootargs 'root=/dev/ram0 init=/bin/sh'
setenv load_rd_ext2 'ide res; ext2load ide 0:2 ${rd_start} /boot/initrd.gz'
setenv load_rd_tftp 'tftp ${rd_start} /initrd.gz'
setenv load_kernel_hda 'ide res; diskboot ${load_addr} 0:2'
setenv load_kernel_ext2 'ide res; ext2load ide 0:2 ${load_addr} /boot/uImage'
setenv load_kernel_tftp 'tftp ${load_addr} /qemu_mips/uImage'
setenv boot_ext2_ext2 'run load_rd_ext2; run load_kernel_ext2; run addmisc; bootm ${load_addr}'
setenv boot_ext2_flash 'run load_rd_ext2; run addmisc; bootm ${kernel_flash}'
setenv boot_ext2_hda 'run load_rd_ext2; run load_kernel_hda; run addmisc; bootm ${load_addr}'
setenv boot_ext2_tftp 'run load_rd_ext2; run load_kernel_tftp; run addmisc; bootm ${load_addr}'
setenv boot_tftp_hda 'run load_rd_tftp; run load_kernel_hda; run addmisc; bootm ${load_addr}'
setenv boot_tftp_ext2 'run load_rd_tftp; run load_kernel_ext2; run addmisc; bootm ${load_addr}'
setenv boot_tftp_flash 'run load_rd_tftp; run addmisc; bootm ${kernel_flash}'
setenv boot_tftp_tftp 'run load_rd_tftp; run load_kernel_tftp; run addmisc; bootm ${load_addr}'
setenv load_hello_tftp 'tftp ${load_addr_hello} /examples/hello_world.bin'
setenv go_tftp 'run load_hello_tftp; go ${load_addr_hello}'
setenv addmisc 'setenv bootargs ${bootargs} console=ttyS0,${baudrate} rd_start=${rd_start} rd_size=${rd_size} ethaddr=${ethaddr}'
setenv bootcmd 'run boot_tftp_flash'

Now you can boot from flash, ide, ide+ext2 and tfp

qemu-system-mips -M mips -pflash flash -monitor null -nographic -net nic -net user -tftp `pwd` -hda ide

How to debug U-Boot

In order to debug U-Boot you need to start qemu with gdb server support (-s)
and waiting the connection to start the CPU (-S)

qemu-system-mips -S -s -M mips -pflash flash -monitor null -nographic -net nic -net user -tftp `pwd` -hda ide

in an other console you start gdb

Debugging of U-Boot Before Relocation

Before relocation, the addresses in the ELF file can be used without any problems
by connecting to the gdb server localhost:1234

$ mipsel-unknown-linux-gnu-gdb u-boot
GNU gdb 6.6
Copyright (C) 2006 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "--host=i486-linux-gnu --target=mipsel-unknown-linux-gnu"...
(gdb) target remote localhost:1234
Remote debugging using localhost:1234
_start () at start.S:64
64 RVECENT(reset,0) /* U-Boot entry point */
Current language: auto; currently asm
(gdb) b board.c:289
Breakpoint 1 at 0xbfc00cc8: file board.c, line 289.
(gdb) c
Continuing.

Breakpoint 1, board_init_f (bootflag=<value optimized out>) at board.c:290
290 relocate_code (addr_sp, id, addr);
Current language: auto; currently c
(gdb) p/x addr
$1 = 0x87fa0000

Debugging of U-Boot After Relocation

For debugging U-Boot after relocation we need to know the address to which
U-Boot relocates itself to 0x87fa0000 by default.
And replace the symbol table to this offset.

(gdb) symbol-file
Discard symbol table from `/private/u-boot-arm/u-boot'? (y or n) y
Error in re-setting breakpoint 1:
No symbol table is loaded. Use the "file" command.
No symbol file now.
(gdb) add-symbol-file u-boot 0x87fa0000
add symbol table from file "u-boot" at
 .text_addr = 0x87fa0000
(y or n) y
Reading symbols from /private/u-boot-arm/u-boot...done.
Breakpoint 1 at 0x87fa0cc8: file board.c, line 289.
(gdb) c
Continuing.

Program received signal SIGINT, Interrupt.
0xffffffff87fa0de4 in udelay (usec=<value optimized out>) at time.c:78
78 while ((tmo - read_c0_count()) < 0x7fffffff)

QEMU RISC-V

QEMU for RISC-V supports a special ‘virt’ machine designed for emulation and
virtualization purposes. This document describes how to run U-Boot under it.
Both 32-bit and 64-bit targets are supported, running in either machine or
supervisor mode.

The QEMU virt machine models a generic RISC-V virtual machine with support for
the VirtIO standard networking and block storage devices. It has CLINT, PLIC,
16550A UART devices in addition to VirtIO and it also uses device-tree to pass
configuration information to guest software. It implements RISC-V privileged
architecture spec v1.10.

Building U-Boot

Set the CROSS_COMPILE environment variable as usual, and run:

	For 32-bit RISC-V:

make qemu-riscv32_defconfig
make

	For 64-bit RISC-V:

make qemu-riscv64_defconfig
make

This will compile U-Boot for machine mode. To build supervisor mode binaries,
use the configurations qemu-riscv32_smode_defconfig and
qemu-riscv64_smode_defconfig instead. Note that U-Boot running in supervisor
mode requires a supervisor binary interface (SBI), such as RISC-V OpenSBI.

Running U-Boot

The minimal QEMU command line to get U-Boot up and running is:

	For 32-bit RISC-V:

qemu-system-riscv32 -nographic -machine virt -kernel u-boot

	For 64-bit RISC-V:

qemu-system-riscv64 -nographic -machine virt -kernel u-boot

The commands above create targets with 128MiB memory by default.
A freely configurable amount of RAM can be created via the ‘-m’
parameter. For example, ‘-m 2G’ creates 2GiB memory for the target,
and the memory node in the embedded DTB created by QEMU reflects
the new setting.

For instructions on how to run U-Boot in supervisor mode on QEMU
with OpenSBI, see the documentation available with OpenSBI:
https://github.com/riscv/opensbi/blob/master/docs/platform/qemu_virt.md

These have been tested in QEMU 3.0.0.

Running U-Boot SPL

In the default SPL configuration, U-Boot SPL starts in machine mode. U-Boot
proper and OpenSBI (FW_DYNAMIC firmware) are bundled as FIT image and made
available to U-Boot SPL. Both are then loaded by U-Boot SPL and the location
of U-Boot proper is passed to OpenSBI. After initialization, U-Boot proper is
started in supervisor mode by OpenSBI.

OpenSBI must be compiled before compiling U-Boot. Version 0.4 and higher is
supported by U-Boot. Clone the OpenSBI repository and run the following command.

git clone https://github.com/riscv/opensbi.git
cd opensbi
make PLATFORM=qemu/virt

See the OpenSBI documentation for full details:
https://github.com/riscv/opensbi/blob/master/docs/platform/qemu_virt.md

To make the FW_DYNAMIC binary (build/platform/qemu/virt/firmware/fw_dynamic.bin)
available to U-Boot, either copy it into the U-Boot root directory or specify
its location with the OPENSBI environment variable. Afterwards, compile U-Boot
with the following commands.

	For 32-bit RISC-V:

make qemu-riscv32_spl_defconfig
make

	For 64-bit RISC-V:

make qemu-riscv64_spl_defconfig
make

The minimal QEMU commands to run U-Boot SPL in both 32-bit and 64-bit
configurations are:

	For 32-bit RISC-V:

qemu-system-riscv32 -nographic -machine virt -kernel spl/u-boot-spl \
-device loader,file=u-boot.itb,addr=0x80200000

	For 64-bit RISC-V:

qemu-system-riscv64 -nographic -machine virt -kernel spl/u-boot-spl \
-device loader,file=u-boot.itb,addr=0x80200000

QEMU x86

Build instructions for bare mode

To build u-boot.rom for QEMU x86 targets, just simply run:

$ make qemu-x86_defconfig (for 32-bit)
$ make qemu-x86_64_defconfig (for 64-bit)
$ make all

Note this default configuration will build a U-Boot for the QEMU x86 i440FX
board. To build a U-Boot against QEMU x86 Q35 board, you can change the build
configuration during the ‘make menuconfig’ process like below:

Device Tree Control --->
 ...
 (qemu-x86_q35) Default Device Tree for DT control

Test with QEMU for bare mode

QEMU is a fancy emulator that can enable us to test U-Boot without access to
a real x86 board. Please make sure your QEMU version is 2.3.0 or above test
U-Boot. To launch QEMU with u-boot.rom, call QEMU as follows:

$ qemu-system-i386 -nographic -bios path/to/u-boot.rom

This will instantiate an emulated x86 board with i440FX and PIIX chipset. QEMU
also supports emulating an x86 board with Q35 and ICH9 based chipset, which is
also supported by U-Boot. To instantiate such a machine, call QEMU with:

$ qemu-system-i386 -nographic -bios path/to/u-boot.rom -M q35

Note by default QEMU instantiated boards only have 128 MiB system memory. But
it is enough to have U-Boot boot and function correctly. You can increase the
system memory by pass ‘-m’ parameter to QEMU if you want more memory:

$ qemu-system-i386 -nographic -bios path/to/u-boot.rom -m 1024

This creates a board with 1 GiB system memory. Currently U-Boot for QEMU only
supports 3 GiB maximum system memory and reserves the last 1 GiB address space
for PCI device memory-mapped I/O and other stuff, so the maximum value of ‘-m’
would be 3072.

QEMU emulates a graphic card which U-Boot supports. Removing ‘-nographic’ will
show QEMU’s VGA console window. Note this will disable QEMU’s serial output.
If you want to check both consoles, use ‘-serial stdio’.

Multicore is also supported by QEMU via ‘-smp n’ where n is the number of cores
to instantiate. Note, the maximum supported CPU number in QEMU is 255.

U-Boot uses ‘distro_bootcmd’ by default when booting on x86 QEMU. This tries to
load a boot script, kernel, and ramdisk from several different interfaces. For
the default boot order, see ‘qemu-x86.h’. For more information, see
‘README.distro’. Most Linux distros can be booted by writing a uboot script.
For example, Debian (stretch) can be booted by creating a script file named
‘boot.txt’ with the contents:

setenv bootargs root=/dev/sda1 ro
load ${devtype} ${devnum}:${distro_bootpart} ${kernel_addr_r} /vmlinuz
load ${devtype} ${devnum}:${distro_bootpart} ${ramdisk_addr_r} /initrd.img
zboot ${kernel_addr_r} - ${ramdisk_addr_r} ${filesize}

Then compile and install it with:

$ apt install u-boot-tools && \
 mkimage -T script -C none -n "Boot script" -d boot.txt /boot/boot.scr

The fw_cfg interface in QEMU also provides information about kernel data,
initrd, command-line arguments and more. U-Boot supports directly accessing
these informtion from fw_cfg interface, which saves the time of loading them
from hard disk or network again, through emulated devices. To use it , simply
providing them in QEMU command line:

$ qemu-system-i386 -nographic -bios path/to/u-boot.rom -m 1024 \
 -kernel /path/to/bzImage -append 'root=/dev/ram console=ttyS0' \
 -initrd /path/to/initrd -smp 8

Note: -initrd and -smp are both optional

Then start QEMU, in U-Boot command line use the following U-Boot command to
setup kernel:

=> qfw
qfw - QEMU firmware interface

Usage:
qfw <command>
 - list : print firmware(s) currently loaded
 - cpus : print online cpu number
 - load <kernel addr> <initrd addr> : load kernel and initrd (if any) and setup for zboot

=> qfw load
loading kernel to address 01000000 size 5d9d30 initrd 04000000 size 1b1ab50

Here the kernel (bzImage) is loaded to 01000000 and initrd is to 04000000. Then,
‘zboot’ can be used to boot the kernel:

=> zboot 01000000 - 04000000 1b1ab50

To run 64-bit U-Boot, qemu-system-x86_64 should be used instead, e.g.:

$ qemu-system-x86_64 -nographic -bios path/to/u-boot.rom

A specific CPU can be specified via the ‘-cpu’ parameter but please make
sure the specified CPU supports 64-bit like ‘-cpu core2duo’. Conversely
‘-cpu pentium’ won’t work for obvious reasons that the processor only
supports 32-bit.

Note 64-bit support is very preliminary at this point. Lots of features
are missing in the 64-bit world. One notable feature is the VGA console
support which is currently missing, so that you must specify ‘-nographic’
to get 64-bit U-Boot up and running.

Freescale

	B4860QDS
	B4860 Overview

	B4860QDS Overview

	B4420 Personality

	Key differences between B4860 and B4420

	B4860QDS Default Settings

	Switch Settings

	B4420QDS Default Settings

	Switch Settings

	Memory map on B4860QDS

	Memory map on B4420QDS

	NOR Flash memory Map on B4860 and B4420QDS

	Various Software configurations/environment variables/commands

	NAND boot with 2 Stage boot loader

	NAND Flash memory Map on B4860 and B4420QDS

B4860QDS

The B4860QDS is a Freescale reference board that hosts the B4860 SoC
(and variants).

B4860 Overview

The B4860 QorIQ Qonverge device is a Freescale high-end, multicore SoC based on
StarCore and Power Architecture® cores. It targets the broadband wireless
infrastructure and builds upon the proven success of the existing multicore
DSPs and Power CPUs. It is designed to bolster the rapidly changing and
expanding wireless markets, such as 3GLTE (FDD and TDD), LTE-Advanced, and UMTS.

The B4860 is a highly-integrated StarCore and Power Architecture processor that
contains:

	Six fully-programmable StarCore SC3900 FVP subsystems, divided into three
clusters-each core runs up to 1.2 GHz, with an architecture highly optimized
for wireless base station applications

	Four dual-thread e6500 Power Architecture processors organized in one
cluster-each core runs up to 1.8 GHz

	Two DDR3/3L controllers for high-speed, industry-standard memory interface
each runs at up to 1866.67 MHz

	MAPLE-B3 hardware acceleration-for forward error correction schemes including
Turbo or Viterbi decoding, Turbo encoding and rate matching, MIMO MMSE
equalization scheme, matrix operations, CRC insertion and check, DFT/iDFT and
FFT/iFFT calculations, PUSCH/PDSCH acceleration, and UMTS chip rate
acceleration

	CoreNet fabric that fully supports coherency using MESI protocol between the
e6500 cores, SC3900 FVP cores, memories and external interfaces.
CoreNet fabric interconnect runs at 667 MHz and supports coherent and
non-coherent out of order transactions with prioritization and bandwidth
allocation amongst CoreNet endpoints.

	Data Path Acceleration Architecture, which includes the following:

	Frame Manager (FMan), which supports in-line packet parsing and general
classification to enable policing and QoS-based packet distribution

	Queue Manager (QMan) and Buffer Manager (BMan), which allow offloading
of queue management, task management, load distribution, flow ordering,
buffer management, and allocation tasks from the cores

	Security engine (SEC 5.3)-crypto-acceleration for protocols such as
IPsec, SSL, and 802.16

	RapidIO manager (RMAN) - Support SRIO types 8, 9, 10, and 11 (inbound
and outbound). Supports types 5, 6 (outbound only)

	Large internal cache memory with snooping and stashing capabilities for
bandwidth saving and high utilization of processor elements. The 9856-Kbyte
internal memory space includes the following:

	32 Kbyte L1 ICache per e6500/SC3900 core

	32 Kbyte L1 DCache per e6500/SC3900 core

	2048 Kbyte unified L2 cache for each SC3900 FVP cluster

	2048 Kbyte unified L2 cache for the e6500 cluster

	Two 512 Kbyte shared L3 CoreNet platform caches (CPC)

	Sixteen 10-GHz SerDes lanes serving:

	Two Serial RapidIO interfaces

	Each supports up to 4 lanes and a total of up to 8 lanes

	Up to 8-lanes Common Public Radio Interface (CPRI) controller for
glue-less antenna connection

	Two 10-Gbit Ethernet controllers (10GEC)

	Six 1G/2.5-Gbit Ethernet controllers for network communications

	PCI Express controller

	Debug (Aurora)

	Two OCeaN DMAs

	Various system peripherals

	182 32-bit timers

B4860QDS Overview

	DDRC1: Ten separate DDR3 parts of 16-bit to support 72-bit (ECC) at 1866MT/s,
ECC, 4 GB of memory in two ranks of 2 GB.

	DDRC2: Five separate DDR3 parts of 16-bit to support 72-bit (ECC) at 1866MT/s,
ECC, 2 GB of memory. Single rank.

	SerDes 1 multiplexing: Two Vitesse (transmit and receive path) cross-point
16x16 switch VSC3316

	SerDes 2 multiplexing: Two Vitesse (transmit and receive path) cross-point
8x8 switch VSC3308

	USB 2.0 ULPI PHY USB3315 by SMSC supports USB port in host mode.
B4860 UART port is available over USB-to-UART translator USB2SER or over
RS232 flat cable.

	A Vitesse dual SGMII phy VSC8662 links the B4860 SGMII lines to 2xRJ-45
copper connectors for Stand-alone mode and to the 1000Base-X over AMC
MicroTCA connector ports 0 and 2 for AMC mode.

	The B4860 configuration may be loaded from nine bits coded reset configuration
reset source. The RCW source is set by appropriate DIP-switches.

	16-bit NOR Flash / PROMJet

	QIXIS 8-bit NOR Flash Emulator

	8-bit NAND Flash

	24-bit SPI Flash

	Long address I2C EEPROM

	Available debug interfaces are:

	On-board eCWTAP controller with ETH and USB I/F

	JTAG/COP 16-pin header for any external TAP controller

	External JTAG source over AMC to support B2B configuration

	70-pin Aurora debug connector

	
	QIXIS (FPGA) logic:

	
	2 KB internal memory space including

	IDT840NT4 clock synthesizer provides B4860 essential clocks : SYSCLK,
DDRCLK1,2 and RTCCLK.

	Two 8T49N222A SerDes ref clock devices support two SerDes port clock
frequency - total four refclk, including CPRI clock scheme.

B4420 Personality

B4420 is a reduced personality of B4860 with less core/clusters(both SC3900
and e6500), less DDR controllers, less serdes lanes, less SGMII interfaces
and reduced target frequencies.

Key differences between B4860 and B4420

B4420 has:

	Less e6500 cores: 1 cluster with 2 e6500 cores

	Less SC3900 cores/clusters: 1 cluster with 2 SC3900 cores per cluster

	Single DDRC

	2X 4 lane serdes

	3 SGMII interfaces

	no sRIO

	no 10G

B4860QDS Default Settings

Switch Settings

SW1 OFF [0] OFF [0] OFF [0] OFF [0] OFF [0] OFF [0] OFF [0] OFF [0]
SW2 ON ON ON ON ON ON OFF OFF
SW3 OFF OFF OFF ON OFF OFF ON OFF
SW5 OFF OFF OFF OFF OFF OFF ON ON

Note:

	PCIe slots modes: All the PCIe devices work as Root Complex.

	Boot location: NOR flash.

SysClk/Core(e6500)/CCB/DDR/FMan/DDRCLK/StarCore/CPRI-Maple/eTVPE-Maple/ULB-Maple
66MHz/1.6GHz/667MHz/1.6GHz data rate/667MHz/133MHz/1200MHz/500MHz/800MHz/667MHz

NAND boot:

SW1 [1.1] = 0
SW2 [1.1] = 1
SW3 [1:4] = 0001

NOR boot:

SW1 [1.1] = 1
SW2 [1.1] = 0
SW3 [1:4] = 1000

B4420QDS Default Settings

Switch Settings

SW1 OFF[0] OFF [0] OFF [0] OFF [0] OFF [0] OFF [0] OFF [0] OFF [0]
SW2 ON OFF ON OFF ON ON OFF OFF
SW3 OFF OFF OFF ON OFF OFF ON OFF
SW5 OFF OFF OFF OFF OFF OFF ON ON

Note:

	PCIe slots modes: All the PCIe devices work as Root Complex.

	Boot location: NOR flash.

SysClk/Core(e6500)/CCB/DDR/FMan/DDRCLK/StarCore/CPRI-Maple/eTVPE-Maple/ULB-Maple
66MHz/1.6GHz/667MHz/1.6GHz data rate/667MHz/133MHz/1200MHz/500MHz/800MHz/667MHz

NAND boot:

SW1 [1.1] = 0
SW2 [1.1] = 1
SW3 [1:4] = 0001

NOR boot:

SW1 [1.1] = 1
SW2 [1.1] = 0
SW3 [1:4] = 1000

Memory map on B4860QDS

The addresses in brackets are physical addresses.

	Start Address

	End Address

	Description

	Size

	0xF_FFDF_1000

	0xF_FFFF_FFFF

	Free

	2 MB

	0xF_FFDF_0000

	0xF_FFDF_0FFF

	IFC - FPGA

	4 KB

	0xF_FF81_0000

	0xF_FFDE_FFFF

	Free

	5 MB

	0xF_FF80_0000

	0xF_FF80_FFFF

	IFC NAND Flash

	64 KB

	0xF_FF00_0000

	0xF_FF7F_FFFF

	Free

	8 MB

	0xF_FE00_0000

	0xF_FEFF_FFFF

	CCSRBAR

	16 MB

	0xF_F801_0000

	0xF_FDFF_FFFF

	Free

	95 MB

	0xF_F800_0000

	0xF_F800_FFFF

	PCIe I/O Space

	64 KB

	0xF_F600_0000

	0xF_F7FF_FFFF

	QMAN s/w portal

	32 MB

	0xF_F400_0000

	0xF_F5FF_FFFF

	BMAN s/w portal

	32 MB

	0xF_F000_0000

	0xF_F3FF_FFFF

	Free

	64 MB

	0xF_E800_0000

	0xF_EFFF_FFFF

	IFC NOR Flash

	128 MB

	0xF_E000_0000

	0xF_E7FF_FFFF

	Promjet

	128 MB

	0xF_A0C0_0000

	0xF_DFFF_FFFF

	Free

	1012 MB

	0xF_A000_0000

	0xF_A0BF_FFFF

	MAPLE0/1/2

	12 MB

	0xF_0040_0000

	0xF_9FFF_FFFF

	Free

	12 GB

	0xF_0000_0000

	0xF_01FF_FFFF

	DCSR

	32 MB

	0xC_4000_0000

	0xE_FFFF_FFFF

	Free

	11 GB

	0xC_3000_0000

	0xC_3FFF_FFFF

	sRIO-2 I/O

	256 MB

	0xC_2000_0000

	0xC_2FFF_FFFF

	sRIO-1 I/O

	256 MB

	0xC_0000_0000

	0xC_1FFF_FFFF

	PCIe Mem Space

	512 MB

	0x1_0000_0000

	0xB_FFFF_FFFF

	Free

	44 GB

	0x0_8000_0000

	0x0_FFFF_FFFF

	DDRC1

	2 GB

	0x0_0000_0000

	0x0_7FFF_FFFF

	DDRC2

	2 GB

Memory map on B4420QDS

The addresses in brackets are physical addresses.

	Start Address

	End Address

	Description

	Size

	0xF_FFDF_1000

	0xF_FFFF_FFFF

	Free

	2 MB

	0xF_FFDF_0000

	0xF_FFDF_0FFF

	IFC - FPGA

	4 KB

	0xF_FF81_0000

	0xF_FFDE_FFFF

	Free

	5 MB

	0xF_FF80_0000

	0xF_FF80_FFFF

	IFC NAND Flash

	64 KB

	0xF_FF00_0000

	0xF_FF7F_FFFF

	Free

	8 MB

	0xF_FE00_0000

	0xF_FEFF_FFFF

	CCSRBAR

	16 MB

	0xF_F801_0000

	0xF_FDFF_FFFF

	Free

	95 MB

	0xF_F800_0000

	0xF_F800_FFFF

	PCIe I/O Space

	64 KB

	0xF_F600_0000

	0xF_F7FF_FFFF

	QMAN s/w portal

	32 MB

	0xF_F400_0000

	0xF_F5FF_FFFF

	BMAN s/w portal

	32 MB

	0xF_F000_0000

	0xF_F3FF_FFFF

	Free

	64 MB

	0xF_E800_0000

	0xF_EFFF_FFFF

	IFC NOR Flash

	128 MB

	0xF_E000_0000

	0xF_E7FF_FFFF

	Promjet

	128 MB

	0xF_A0C0_0000

	0xF_DFFF_FFFF

	Free

	1012 MB

	0xF_A000_0000

	0xF_A0BF_FFFF

	MAPLE0/1/2

	12 MB

	0xF_0040_0000

	0xF_9FFF_FFFF

	Free

	12 GB

	0xF_0000_0000

	0xF_01FF_FFFF

	DCSR

	32 MB

	0xC_4000_0000

	0xE_FFFF_FFFF

	Free

	11 GB

	0xC_3000_0000

	0xC_3FFF_FFFF

	sRIO-2 I/O

	256 MB

	0xC_2000_0000

	0xC_2FFF_FFFF

	sRIO-1 I/O

	256 MB

	0xC_0000_0000

	0xC_1FFF_FFFF

	PCIe Mem Space

	512 MB

	0x1_0000_0000

	0xB_FFFF_FFFF

	Free

	44 GB

	0x0_0000_0000

	0x0_FFFF_FFFF

	DDRC1

	4 GB

NOR Flash memory Map on B4860 and B4420QDS

	Start

	End

	Definition

	Size

	0xEFF40000

	0xEFFFFFFF

	U-Boot (current bank)

	768KB

	0xEFF20000

	0xEFF3FFFF

	U-Boot env (current bank)

	128KB

	0xEFF00000

	0xEFF1FFFF

	FMAN Ucode (current bank)

	128KB

	0xEF300000

	0xEFEFFFFF

	rootfs (alternate bank)

	12MB

	0xEE800000

	0xEE8FFFFF

	device tree (alternate bank)

	1MB

	0xEE020000

	0xEE6FFFFF

	Linux.uImage (alternate bank)

	6MB+896KB

	0xEE000000

	0xEE01FFFF

	RCW (alternate bank)

	128KB

	0xEDF40000

	0xEDFFFFFF

	U-Boot (alternate bank)

	768KB

	0xEDF20000

	0xEDF3FFFF

	U-Boot env (alternate bank)

	128KB

	0xEDF00000

	0xEDF1FFFF

	FMAN ucode (alternate bank)

	128KB

	0xED300000

	0xEDEFFFFF

	rootfs (current bank)

	12MB

	0xEC800000

	0xEC8FFFFF

	device tree (current bank)

	1MB

	0xEC020000

	0xEC6FFFFF

	Linux.uImage (current bank)

	6MB+896KB

	0xEC000000

	0xEC01FFFF

	RCW (current bank)

	128KB

Various Software configurations/environment variables/commands

The below commands apply to both B4860QDS and B4420QDS.

U-Boot environment variable hwconfig

The default hwconfig is:

hwconfig=fsl_ddr:ctlr_intlv=null,bank_intlv=cs0_cs1;usb1:dr_mode=host,phy_type=ulpi

Note: For USB gadget set “dr_mode=peripheral”

FMAN Ucode versions

fsl_fman_ucode_B4860_106_3_6.bin

Switching to alternate bank

Commands for switching to alternate bank.

	To change from vbank0 to vbank2

=> qixis_reset altbank (it will boot using vbank2)

	To change from vbank2 to vbank0

=> qixis reset (it will boot using vbank0)

To change personality of board

For changing personality from B4860 to B4420

	Boot from vbank0

	Flash vbank2 with b4420 rcw and U-Boot

	Give following commands to uboot prompt

=> mw.b ffdf0040 0x30;
=> mw.b ffdf0010 0x00;
=> mw.b ffdf0062 0x02;
=> mw.b ffdf0050 0x02;
=> mw.b ffdf0010 0x30;
=> reset

Note:

	Power off cycle will lead to default switch settings.

	0xffdf0000 is the address of the QIXIS FPGA.

Switching between NOR and NAND boot(RCW src changed from NOR <-> NAND)

To change from NOR to NAND boot give following command on uboot prompt

=> mw.b ffdf0040 0x30
=> mw.b ffdf0010 0x00
=> mw.b 0xffdf0050 0x08
=> mw.b 0xffdf0060 0x82
=> mw.b ffdf0061 0x00
=> mw.b ffdf0010 0x30
=> reset

To change from NAND to NOR boot give following command on uboot prompt:

=> mw.b ffdf0040 0x30
=> mw.b ffdf0010 0x00
=> mw.b 0xffdf0050 0x00(for vbank0) or (mw.b 0xffdf0050 0x02 for vbank2)
=> mw.b 0xffdf0060 0x12
=> mw.b ffdf0061 0x01
=> mw.b ffdf0010 0x30
=> reset

Note:

	Power off cycle will lead to default switch settings.

	0xffdf0000 is the address of the QIXIS FPGA.

Ethernet interfaces for B4860QDS

Serdes protocosl tested:
* 0x2a, 0x8d (serdes1, serdes2) [DEFAULT]
* 0x2a, 0xb2 (serdes1, serdes2)

When using [DEFAULT] RCW, which including 2 * 1G SGMII on board and 2 * 1G
SGMII on SGMII riser card.

Under U-Boot these network interfaces are recognized as:

FM1@DTSEC3, FM1@DTSEC4, FM1@DTSEC5 and FM1@DTSEC6.

On Linux the interfaces are renamed as:

eth2 -> fm1-gb2
eth3 -> fm1-gb3
eth4 -> fm1-gb4
eth5 -> fm1-gb5

RCW and Ethernet interfaces for B4420QDS

Serdes protocosl tested:
* 0x18, 0x9e (serdes1, serdes2)

Under U-Boot these network interfaces are recognized as:

FM1@DTSEC3, FM1@DTSEC4 and e1000#0.

On Linux the interfaces are renamed as:

eth2 -> fm1-gb2
eth3 -> fm1-gb3

NAND boot with 2 Stage boot loader

PBL initialise the internal SRAM and copy SPL(160KB) in SRAM.
SPL further initialise DDR using SPD and environment variables and copy
U-Boot(768 KB) from flash to DDR.
Finally SPL transer control to U-Boot for futher booting.

	SPL has following features:

	
	Executes within 256K

	No relocation required

Run time view of SPL framework during boot:

	Area | Address

	Secure boot | 0xFFFC0000 (32KB)
headers |

	GD, BD | 0xFFFC8000 (4KB)

	ENV | 0xFFFC9000 (8KB)

	HEAP | 0xFFFCB000 (30KB)

	STACK | 0xFFFD8000 (22KB)

	U-Boot SPL | 0xFFFD8000 (160KB)

NAND Flash memory Map on B4860 and B4420QDS

	Start

	End

	Definition

	Size

	0x000000

	0x0FFFFF

	U-Boot

	1MB

	0x140000

	0x15FFFF

	U-Boot env

	128KB

	0x1A0000

	0x1BFFFF

	FMAN Ucode

	128KB

Google

	Chromebook Coral
	Boot flow - TPL

	Boot flow - SPL

	Boot flow - U-Boot pre-relocation

	Boot flow - U-Boot post-relocation

	Performance

	Partial memory map

	Supported peripherals

	To do

	Credits

	Chromebook Link

	Chromebook Samus

Chromebook Coral

Coral is a Chromebook (or really about 20 different Chromebooks) which use the
Intel Apollo Lake platform (APL). The ‘reef’ Chromebooks use the same APL SoC so
should also work. Some later ones based on Glacier Lake (GLK) need various
changes in GPIOs, etc. but are very similar.

It is hoped that this port can enable ports to embedded APL boards which are
starting to appear.

Note that booting U-Boot on APL is already supported by coreboot and
Slim Bootloader. This documentation refers to a ‘bare metal’ port.

Boot flow - TPL

Apollo Lake boots via an IFWI (Integrated Firmware Image). TPL is placed in
this, in the IBBL entry.

On boot, an on-chip microcontroller called the CSE (Converged Security Engine)
sets up some SDRAM at ffff8000 and loads the TPL image to that address. The
SRAM extends up to the top of 32-bit address space, but the last 2KB is the
start16 region, so the TPL image must be 30KB at most, and CONFIG_TPL_TEXT_BASE
must be ffff8000. Actually the start16 region is small and it could probably
move from f800 to fe00, providing another 1.5KB, but TPL is only about 19KB so
there is no need to change it at present. The size limit is enforced by
CONFIG_TPL_SIZE_LIMIT to avoid producing images that won’t boot.

TPL (running from start.S) first sets up CAR (Cache-as-RAM) which provides
larger area of RAM for use while booting. CAR is mapped at CONFIG_SYS_CAR_ADDR
(fef00000) and is 768KB in size. It then sets up the stack in the botttom 64KB
of this space (i.e. below fef10000). This means that the stack and early
malloc() region in TPL can be 64KB at most.

TPL operates without CONFIG_TPL_PCI enabled so PCI config access must use the
x86-specific functions pci_x86_write_config(), etc. SPL creates a simple-bus
device so that PCI devices are bound by driver model. Then arch_cpu_init_tpl()
is called to early init on various devices. This includes placing PCI devices
at hard-coded addresses in the memory map. PCI auto-config is not used.

Most of the 16KB ROM is mapped into the very top of memory, except for the
Intel descriptor (first 4KB) and the space for SRAM as above.

TPL does not set up a bloblist since at present it does not have anything to
pass to SPL.

Once TPL is done it loads SPL from ROM using either the memory-mapped SPI or by
using the Intel fast SPI driver. SPL is loaded into CAR, at the address given
by CONFIG_SPL_TEXT_BASE, which is normally fef10000.

Note that booting using the SPI driver results in an TPL image that is about
26KB in size instead of 19KB. Also boot speed is worse by about 340ms. If you
really want to use the driver, enable CONFIG_APL_SPI_FLASH_BOOT and set
BOOT_FROM_FAST_SPI_FLASH to true[2].

Boot flow - SPL

SPL (running from start_from_tpl.S) continues to use the same stack as TPL.
It calls arch_cpu_init_spl() to set up a few devices, then init_dram() loads
the FSP-M binary into CAR and runs to, to set up SDRAM. The address of the
output ‘HOB’ list (Hand-off-block) is stored into gd->arch.hob_list for parsing.
There is a 2GB chunk of SDRAM starting at 0 and the rest is at 4GB.

PCI auto-config is not used in SPL either, but CONFIG_SPL_PCI is defined, so
proper PCI access is available and normal dm_pci_read_config() calls can be
used. However PCI auto-config is not used so the same static memory mapping set
up by TPL is still active.

SPL on x86 always runs with CONFIG_SPL_SEPARATE_BSS=y and BSS is at 120000
(see u-boot-spl.lds). This works because SPL doesn’t access BSS until after
board_init_r(), as per the rules, and DRAM is available then.

SPL sets up a bloblist and passes the SPL hand-off information to U-Boot proper.
This includes a pointer to the HOB list as well as DRAM information. See
struct arch_spl_handoff. The bloblist address is set by CONFIG_BLOBLIST_ADDR,
normally 100000.

SPL uses SPI flash to update the MRC caches in ROM. This speeds up subsequent
boots. Be warned that SPL can take 30 seconds without this cache! This is a
known issue with Intel SoCs with modern DRAM and apparently cannot be improved.
The MRC caches are used to work around this.

Once SPL is finished it loads U-Boot into SDRAM at CONFIG_SYS_TEXT_BASE, which
is normally 1110000. Note that CAR is still active.

Boot flow - U-Boot pre-relocation

U-Boot (running from start_from_spl.S) starts running in RAM and uses the same
stack as SPL. It does various init activities before relocation. Notably
arch_cpu_init_dm() sets up the pin muxing for the chip using a very large table
in the device tree.

PCI auto-config is not used before relocation, but CONFIG_PCI of course is
defined, so proper PCI access is available. The same static memory mapping set
up by TPL is still active until relocation.

As per usual, U-Boot allocates memory at the top of available RAM (a bit below
2GB in this case) and copies things there ready to relocate itself. Notably
reserve_arch() does not reserve space for the HOB list returned by FSP-M since
this is already located in RAM.

U-Boot then shuts down CAR and jumps to its relocated version.

Boot flow - U-Boot post-relocation

U-Boot starts up normally, running near the top of RAM. After driver model is
running, arch_fsp_init_r() is called which loads and runs the FSP-S binary.
This updates the HOB list to include graphics information, used by the fsp_video
driver.

PCI autoconfig is done and a few devices are probed to complete init. Most
others are started only when they are used.

Note that FSP-S is supposed to run after CAR has been shut down, which happens
immediately before U-Boot starts up in its relocated position. Therefore we
cannot run FSP-S before relocation. On the other hand we must run it before
PCI auto-config is done, since FSP-S may show or hide devices. The first device
that probes PCI after relocation is the serial port, in initr_serial(), so FSP-S
must run before that. A corollary is that loading FSP-S must be done without
using the SPI driver, to avoid probing PCI and causing an autoconfig, so
memory-mapped reading is always used for FSP-S.

It would be possible to tear down CAR in SPL instead of U-Boot. The SPL handoff
information could make sure it does not include any pointers into CAR (in fact
it doesn’t). But tearing down CAR in U-Boot allows the initial state used by TPL
and SPL to be read by U-Boot, which seems useful. It also matches how older
platforms start up (those that don’t use SPL).

Performance

Bootstage is used through all phases of U-Boot to keep accurate timimgs for
boot. Use ‘bootstage report’ in U-Boot to see the report, e.g.:

Timer summary in microseconds (16 records):
 Mark Elapsed Stage
 0 0 reset
 155,325 155,325 TPL
 204,014 48,689 end TPL
 204,385 371 SPL
 738,633 534,248 end SPL
 739,161 528 board_init_f
 842,764 103,603 board_init_r
 1,166,233 323,469 main_loop
 1,166,283 50 id=175

Accumulated time:
 62 fast_spi
 202 dm_r
 7,779 dm_spl
 15,555 dm_f
 208,357 fsp-m
 239,847 fsp-s
 292,143 mmap_spi

CPU performance is about 3500 DMIPS:

=> dhry
1000000 iterations in 161 ms: 6211180/s, 3535 DMIPS

Partial memory map

ffffffff Top of ROM (and last byte of 32-bit address space)
ffff8000 TPL loaded here (from IFWI)
ff000000 Bottom of ROM
fefc0000 Top of CAR region
fef96000 Stack for FSP-M
fef40000 59000 FSP-M
fef11000 SPL loaded here
fef10000 CONFIG_BLOBLIST_ADDR
fef10000 Stack top in TPL, SPL and U-Boot before relocation
fef00000 1000 CONFIG_BOOTSTAGE_STASH_ADDR
fef00000 Base of CAR region

 f0000 CONFIG_ROM_TABLE_ADDR
 120000 BSS (defined in u-boot-spl.lds)
 200000 FSP-S (which is run after U-Boot is relocated)
 1110000 CONFIG_SYS_TEXT_BASE

Supported peripherals

	UART

	SPI flash

	Video

	MMC (dev 0) and micro-SD (dev 1)

	Chrome OS EC

	Keyboard

	USB

To do

	
	Finish peripherals

	
	left-side USB

	USB-C

	Cr50 (security chip: a basic driver is running but not included here)

	Sound (Intel I2S support exists, but need da7219 driver)

	Various minor features supported by LPC, etc.

	Booting Chrome OS, e.g. with verified boot

	Integrate with Chrome OS vboot

	Improvements to booting from coreboot (i.e. as a coreboot target)

	Use FSP-T binary instead of our own CAR implementation

	Use the official FSP package instead of the coreboot one

	Enable all CPU cores

	Suspend / resume

	ACPI

Credits

This is a spare-time project conducted slowly over a long period of time.

Much of the code for this port came from Coreboot, an open-source firmware
project similar to U-Boot’s SPL in terms of features.

Also see [2] for information about the boot flow used by coreboot. It is
similar, but has an extra postcar stage. U-Boot doesn’t need this since it
supports relocating itself in memory.

[2] Intel PDF https://www.coreboot.org/images/2/23/Apollolake_SoC.pdf

Chromebook Link

First, you need the following binary blobs:

	descriptor.bin - Intel flash descriptor

	me.bin - Intel Management Engine

	mrc.bin - Memory Reference Code, which sets up SDRAM

	video ROM - sets up the display

You can get these binary blobs by:

$ git clone http://review.coreboot.org/p/blobs.git
$ cd blobs

Find the following files:

	./mainboard/google/link/descriptor.bin

	./mainboard/google/link/me.bin

	./northbridge/intel/sandybridge/systemagent-r6.bin

The 3rd one should be renamed to mrc.bin.
As for the video ROM, you can get it here [http://www.coreboot.org/~stepan/pci8086,0166.rom] and rename it to vga.bin.
Make sure all these binary blobs are put in the board directory.

Now you can build U-Boot and obtain u-boot.rom:

$ make chromebook_link_defconfig
$ make all

Chromebook Samus

First, you need the following binary blobs:

	descriptor.bin - Intel flash descriptor

	me.bin - Intel Management Engine

	mrc.bin - Memory Reference Code, which sets up SDRAM

	refcode.elf - Additional Reference code

	vga.bin - video ROM, which sets up the display

If you have a samus you can obtain them from your flash, for example, in
developer mode on the Chromebook (use Ctrl-Alt-F2 to obtain a terminal and
log in as ‘root’):

cd /tmp
flashrom -w samus.bin
scp samus.bin username@ip_address:/path/to/somewhere

If not see the coreboot tree where you can use:

bash crosfirmware.sh samus

to get the image. There is also an ‘extract_blobs.sh’ scripts that you can use
on the ‘coreboot-Google_Samus.*’ file to short-circuit some of the below.

Then ‘ifdtool -x samus.bin’ on your development machine will produce:

flashregion_0_flashdescriptor.bin
flashregion_1_bios.bin
flashregion_2_intel_me.bin

Rename flashregion_0_flashdescriptor.bin to descriptor.bin
Rename flashregion_2_intel_me.bin to me.bin
You can ignore flashregion_1_bios.bin - it is not used.

To get the rest, use ‘cbfstool samus.bin print’:

samus.bin: 8192 kB, bootblocksize 2864, romsize 8388608, offset 0x700000
alignment: 64 bytes, architecture: x86

	Name

	Offset

	Type

	Size

	cmos_layout.bin

	0x700000

	cmos_layout

	1164

	pci8086,0406.rom

	0x7004c0

	optionrom

	65536

	spd.bin

	0x710500

	(unknown)

	4096

	cpu_microcode_blob.bin

	0x711540

	microcode

	70720

	fallback/romstage

	0x722a00

	stage

	54210

	fallback/ramstage

	0x72fe00

	stage

	96382

	config

	0x7476c0

	raw

	6075

	fallback/vboot

	0x748ec0

	stage

	15980

	fallback/refcode

	0x74cd80

	stage

	75578

	fallback/payload

	0x75f500

	payload

	62878

	u-boot.dtb

	0x76eb00

	(unknown)

	5318

	(empty)

	0x770000

	null

	196504

	mrc.bin

	0x79ffc0

	(unknown)

	222876

	(empty)

	0x7d66c0

	null

	167320

You can extract what you need:

cbfstool samus.bin extract -n pci8086,0406.rom -f vga.bin
cbfstool samus.bin extract -n fallback/refcode -f refcode.rmod
cbfstool samus.bin extract -n mrc.bin -f mrc.bin
cbfstool samus.bin extract -n fallback/refcode -f refcode.bin -U

Note that the -U flag is only supported by the latest cbfstool. It unpacks
and decompresses the stage to produce a coreboot rmodule. This is a simple
representation of an ELF file. You need the patch “Support decoding a stage
with compression”.

Put all 5 files into board/google/chromebook_samus.

Now you can build U-Boot and obtain u-boot.rom:

$ make chromebook_samus_defconfig
$ make all

If you are using em100, then this command will flash write -Boot:

em100 -s -d filename.rom -c W25Q64CV -r

Flash map for samus / broadwell:

	fffff800

	SYS_X86_START16

	ffff0000

	RESET_SEG_START

	fffd8000

	TPL_TEXT_BASE

	fffa0000

	X86_MRC_ADDR

	fff90000

	VGA_BIOS_ADDR

	ffed0000

	SYS_TEXT_BASE

	ffea0000

	X86_REFCODE_ADDR

	ffe70000

	SPL_TEXT_BASE

	ffbf8000

	CONFIG_ENV_OFFSET (environemnt offset)

	ffbe0000

	rw-mrc-cache (Memory-reference-code cache)

	ffa00000

	<spare>

	ff801000

	intel-me (address set by descriptor.bin)

	ff800000

	intel-descriptor

Intel

	Bayley Bay CRB

	Cherry Hill CRB

	Cougar Canyon 2 CRB

	Crown Bay CRB

	Edison
	Build Instructions for U-Boot as main bootloader

	Updating U-Boot on Edison

	Galileo

	Minnowboard MAX

	Slim Bootloader
	Introduction

	Build Instruction for U-Boot as a Slim Bootloader payload

	Prepare Slim Bootloader

	Build Instruction for Slim Bootloader for QEMU target

	Test Linux booting on QEMU target

	Build Instruction for Slim Bootloader for LeafHill (APL) target

	Build Instruction to use ELF U-Boot

Bayley Bay CRB

This uses as FSP as with Crown Bay, except it is for the Atom E3800 series.
Download this and get the .fd file (BAYTRAIL_FSP_GOLD_003_16-SEP-2014.fd at
the time of writing). Put it in the corresponding board directory and rename
it to fsp.bin.

Obtain the VGA RAM (Vga.dat at the time of writing) and put it into the same
board directory as vga.bin.

You still need two more binary blobs. For Bayley Bay, they can be extracted
from the sample SPI image provided in the FSP (SPI.bin at the time of writing):

$./tools/ifdtool -x BayleyBay/SPI.bin
$ cp flashregion_0_flashdescriptor.bin board/intel/bayleybay/descriptor.bin
$ cp flashregion_2_intel_me.bin board/intel/bayleybay/me.bin

Now you can build U-Boot and obtain u-boot.rom:

$ make bayleybay_defconfig
$ make all

Note that the debug version of the FSP is bigger in size. If this version
is used, CONFIG_FSP_ADDR needs to be configured to 0xfffb0000 instead of
the default value 0xfffc0000.

Cherry Hill CRB

This uses Intel FSP for Braswell platform. Download it from Intel FSP website,
put the .fd file to the board directory and rename it to fsp.bin.

Extract descriptor.bin and me.bin from the original BIOS on the board using
ifdtool and put them to the board directory as well.

Note the FSP package for Braswell does not ship a traditional legacy VGA BIOS
image for the integrated graphics device. Instead a new binary called Video
BIOS Table (VBT) is shipped. Put it to the board directory and rename it to
vbt.bin if you want graphics support in U-Boot.

Now you can build U-Boot and obtain u-boot.rom:

$ make cherryhill_defconfig
$ make all

An important note for programming u-boot.rom to the on-board SPI flash is that
you need make sure the SPI flash’s ‘quad enable’ bit in its status register
matches the settings in the descriptor.bin, otherwise the board won’t boot.

For the on-board SPI flash MX25U6435F, this can be done by writing 0x40 to the
status register by DediProg in: Config > Modify Status Register > Write Status
Register(s) > Register1 Value(Hex). This is is a one-time change. Once set, it
persists in SPI flash part regardless of the u-boot.rom image burned.

Cougar Canyon 2 CRB

This uses Intel FSP for 3rd generation Intel Core and Intel Celeron processors
with mobile Intel HM76 and QM77 chipsets platform. Download it from Intel FSP
website and put the .fd file (CHIEFRIVER_FSP_GOLD_001_09-OCTOBER-2013.fd at the
time of writing) in the board directory and rename it to fsp.bin.

Now build U-Boot and obtain u-boot.rom:

$ make cougarcanyon2_defconfig
$ make all

The board has two 8MB SPI flashes mounted, which are called SPI-0 and SPI-1 in
the board manual. The SPI-0 flash should have flash descriptor plus ME firmware
and SPI-1 flash is used to store U-Boot. For convenience, the complete 8MB SPI-0
flash image is included in the FSP package (named Rom00_8M_MB_PPT.bin). Program
this image to the SPI-0 flash according to the board manual just once and we are
all set. For programming U-Boot we just need to program SPI-1 flash. Since the
default u-boot.rom image for this board is set to 2MB, it should be programmed
to the last 2MB of the 8MB chip, address range [600000, 7FFFFF].

Crown Bay CRB

U-Boot support of Intel Crown Bay [http://www.intel.com/content/www/us/en/embedded/design-tools/evaluation-platforms/atom-e660-eg20t-development-kit.html] board relies on a binary blob called
Firmware Support Package (FSP [http://www.intel.com/fsp]) to perform all the necessary initialization
steps as documented in the BIOS Writer Guide, including initialization of the
CPU, memory controller, chipset and certain bus interfaces.

Download the Intel FSP for Atom E6xx series and Platform Controller Hub EG20T,
install it on your host and locate the FSP binary blob. Note this platform
also requires a Chipset Micro Code (CMC) state machine binary to be present in
the SPI flash where u-boot.rom resides, and this CMC binary blob can be found
in this FSP package too.

	./FSP/QUEENSBAY_FSP_GOLD_001_20-DECEMBER-2013.fd

	./Microcode/C0_22211.BIN

Rename the first one to fsp.bin and second one to cmc.bin and put them in the
board directory.

Note the FSP release version 001 has a bug which could cause random endless
loop during the FspInit call. This bug was published by Intel although Intel
did not describe any details. We need manually apply the patch to the FSP
binary using any hex editor (eg: bvi). Go to the offset 0x1fcd8 of the FSP
binary, change the following five bytes values from orginally E8 42 FF FF FF
to B8 00 80 0B 00.

As for the video ROM, you need manually extract it from the Intel provided
BIOS for Crown Bay here [http://www.intel.com/content/www/us/en/secure/intelligent-systems/privileged/e6xx-35-b1-cmc22211.html], using the AMI MMTool [http://www.ami.com/products/bios-uefi-tools-and-utilities/bios-uefi-utilities/]. Check PCI option
ROM ID 8086:4108, extract and save it as vga.bin in the board directory.

Now you can build U-Boot and obtain u-boot.rom:

$ make crownbay_defconfig
$ make all

Edison

Build Instructions for U-Boot as main bootloader

Simple you can build U-Boot and obtain u-boot.bin:

$ make edison_defconfig
$ make all

Updating U-Boot on Edison

By default Intel Edison boards are shipped with preinstalled heavily
patched U-Boot v2014.04. Though it supports DFU which we may be able to
use.

	Prepare u-boot.bin as described in chapter above. You still need one
more step (if and only if you have original U-Boot), i.e. run the
following command:

$ truncate -s %4096 u-boot.bin

	Run your board and interrupt booting to U-Boot console. In the console
call:

=> run do_force_flash_os

	Wait for few seconds, it will prepare environment variable and runs
DFU. Run DFU command from the host system:

$ dfu-util -v -d 8087:0a99 --alt u-boot0 -D u-boot.bin

	Return to U-Boot console and following hint. i.e. push Ctrl+C, and
reset the board:

=> reset

Galileo

Only one binary blob is needed for Remote Management Unit (RMU) within Intel
Quark SoC. Not like FSP, U-Boot does not call into the binary. The binary is
needed by the Quark SoC itself.

You can get the binary blob from Quark Board Support Package from Intel website:

	./QuarkSocPkg/QuarkNorthCluster/Binary/QuarkMicrocode/RMU.bin

Rename the file and put it to the board directory by:

$ cp RMU.bin board/intel/galileo/rmu.bin

Now you can build U-Boot and obtain u-boot.rom:

$ make galileo_defconfig
$ make all

Minnowboard MAX

This uses as FSP as with Crown Bay, except it is for the Atom E3800 series.
Download this and get the .fd file (BAYTRAIL_FSP_GOLD_003_16-SEP-2014.fd at
the time of writing). Put it in the corresponding board directory and rename
it to fsp.bin.

Obtain the VGA RAM (Vga.dat at the time of writing) and put it into the same
board directory as vga.bin.

You still need two more binary blobs. For Minnowboard MAX, we can reuse the
same ME firmware above, but for flash descriptor, we need get that somewhere
else, as the one above does not seem to work, probably because it is not
designed for the Minnowboard MAX. Now download the original firmware image
for this board from:

	http://firmware.intel.com/sites/default/files/2014-WW42.4-MinnowBoardMax.73-64-bit.bin_Release.zip

Unzip it:

$ unzip 2014-WW42.4-MinnowBoardMax.73-64-bit.bin_Release.zip

Use ifdtool in the U-Boot tools directory to extract the images from that
file, for example:

$./tools/ifdtool -x MNW2MAX1.X64.0073.R02.1409160934.bin

This will provide the descriptor file - copy this into the correct place:

$ cp flashregion_0_flashdescriptor.bin board/intel/minnowmax/descriptor.bin

Now you can build U-Boot and obtain u-boot.rom:

$ make minnowmax_defconfig
$ make all

Checksums are as follows (but note that newer versions will invalidate this):

$ md5sum -b board/intel/minnowmax/*.bin
ffda9a3b94df5b74323afb328d51e6b4 board/intel/minnowmax/descriptor.bin
69f65b9a580246291d20d08cbef9d7c5 board/intel/minnowmax/fsp.bin
894a97d371544ec21de9c3e8e1716c4b board/intel/minnowmax/me.bin
a2588537da387da592a27219d56e9962 board/intel/minnowmax/vga.bin

The ROM image is broken up into these parts:

	Offset

	Description

	Controlling config

	000000

	descriptor.bin

	Hard-coded to 0 in ifdtool

	001000

	me.bin

	Set by the descriptor

	500000

	<spare>

	

	6ef000

	Environment

	CONFIG_ENV_OFFSET

	6f0000

	MRC cache

	CONFIG_ENABLE_MRC_CACHE

	700000

	u-boot-dtb.bin

	CONFIG_SYS_TEXT_BASE

	7b0000

	vga.bin

	CONFIG_VGA_BIOS_ADDR

	7c0000

	fsp.bin

	CONFIG_FSP_ADDR

	7f8000

	<spare>

	(depends on size of fsp.bin)

	7ff800

	U-Boot 16-bit boot

	CONFIG_SYS_X86_START16

Overall ROM image size is controlled by CONFIG_ROM_SIZE.

Note that the debug version of the FSP is bigger in size. If this version
is used, CONFIG_FSP_ADDR needs to be configured to 0xfffb0000 instead of
the default value 0xfffc0000.

Slim Bootloader

Introduction

This target is to enable U-Boot [https://gitlab.denx.de/] as a payload of Slim Bootloader [https://github.com/slimbootloader/] (a.k.a SBL)
boot firmware which currently supports QEMU, Apollolake, Whiskeylake,
Coffeelake-R platforms.

The Slim Bootloader [https://github.com/slimbootloader/] is designed with multi-stages (Stage1A/B, Stage2, Payload)
architecture to cover from reset vector to OS booting and it consumes
Intel FSP [https://github.com/IntelFsp/] for silicon initialization.

	Stage1A: Reset vector, CAR init with FSP-T

	Stage1B: Memory init with FSP-M, CAR teardown, Continue execution in memory

	Stage2 : Rest of Silicon init with FSP-S, Create HOB, Hand-off to Payload

	Payload: Payload init with HOB, Load OS from media, Booting OS

The Slim Bootloader stages (Stage1A/B, Stage2) focus on chipset, hardware and
platform specific initialization, and it provides useful information to a
payload in a HOB (Hand-Off Block) which has serial port, memory map, performance
data info and so on. This is Slim Bootloader architectural design to make a
payload light-weight, platform independent and more generic across different
boot solutions or payloads, and to minimize hardware re-initialization in a
payload.

Build Instruction for U-Boot as a Slim Bootloader payload

Build U-Boot and obtain u-boot-dtb.bin:

$ make distclean
$ make slimbootloader_defconfig
$ make all

Prepare Slim Bootloader

	Setup Build Environment for Slim Bootloader.

Refer to Getting Started [https://slimbootloader.github.io/getting-started/] page in Slim Bootloader [https://github.com/slimbootloader/] document site.

	Get source code. Let’s simply clone the repo:

$ git clone https://github.com/slimbootloader/slimbootloader.git

	Copy u-boot-dtb.bin to Slim Bootloader.
Slim Bootloader looks for a payload from the specific location.
Copy the build u-boot-dtb.bin to the expected location:

$ mkdir -p <Slim Bootloader Dir>/PayloadPkg/PayloadBins/
$ cp <U-Boot Dir>/u-boot-dtb.bin <Slim Bootloader Dir>/PayloadPkg/PayloadBins/u-boot-dtb.bin

Build Instruction for Slim Bootloader for QEMU target

Slim Bootloader supports multiple payloads, and a board of Slim Bootloader
detects its target payload by PayloadId in board configuration.
The PayloadId can be any 4 Bytes value.

	Update PayloadId. Let’s use ‘U-BT’ as an example:

$ vi Platform/QemuBoardPkg/CfgData/CfgDataExt_Brd1.dlt
-GEN_CFG_DATA.PayloadId | 'AUTO'
+GEN_CFG_DATA.PayloadId | 'U-BT'

	Update payload text base. PAYLOAD_EXE_BASE must be the same as U-Boot
CONFIG_SYS_TEXT_BASE in board/intel/slimbootloader/Kconfig.
PAYLOAD_LOAD_HIGH must be 0:

$ vi Platform/QemuBoardPkg/BoardConfig.py
+ self.PAYLOAD_LOAD_HIGH = 0
+ self.PAYLOAD_EXE_BASE = 0x00100000

	Build QEMU target. Make sure u-boot-dtb.bin and U-BT PayloadId
in build command. The output is Outputs/qemu/SlimBootloader.bin:

$ python BuildLoader.py build qemu -p "OsLoader.efi:LLDR:Lz4;u-boot-dtb.bin:U-BT:Lzma"

	Launch Slim Bootloader on QEMU.
You should reach at U-Boot serial console:

$ qemu-system-x86_64 -machine q35 -nographic -serial mon:stdio -pflash Outputs/qemu/SlimBootloader.bin

Test Linux booting on QEMU target

Let’s use LeafHill (APL) Yocto image for testing.
Download it from http://downloads.yoctoproject.org/releases/yocto/yocto-2.0/machines/leafhill/.

	Prepare Yocto hard disk image:

$ wget http://downloads.yoctoproject.org/releases/yocto/yocto-2.0/machines/leafhill/leafhill-4.0-jethro-2.0.tar.bz2
$ tar -xvf leafhill-4.0-jethro-2.0.tar.bz2
$ ls -l leafhill-4.0-jethro-2.0/binary/core-image-sato-intel-corei7-64.hddimg

	Launch Slim Bootloader on QEMU with disk image:

$ qemu-system-x86_64 -machine q35 -nographic -serial mon:stdio -pflash Outputs/qemu/SlimBootloader.bin -drive id=mydrive,if=none,file=/path/to/core-image-sato-intel-corei7-64.hddimg,format=raw -device ide-hd,drive=mydrive

	Update boot environment values on shell:

=> setenv bootfile vmlinuz
=> setenv bootdev scsi
=> boot

Build Instruction for Slim Bootloader for LeafHill (APL) target

Prepare U-Boot and Slim Bootloader as described at the beginning of this page.
Also, the PayloadId needs to be set for APL board.

	Update PayloadId. Let’s use ‘U-BT’ as an example:

$ vi Platform/ApollolakeBoardPkg/CfgData/CfgData_Int_LeafHill.dlt
-GEN_CFG_DATA.PayloadId | 'AUTO
+GEN_CFG_DATA.PayloadId | 'U-BT'

	Update payload text base.

	PAYLOAD_EXE_BASE must be the same as U-Boot CONFIG_SYS_TEXT_BASE
in board/intel/slimbootloader/Kconfig.

	PAYLOAD_LOAD_HIGH must be 0:

$ vi Platform/ApollolakeBoardPkg/BoardConfig.py
+ self.PAYLOAD_LOAD_HIGH = 0
+ self.PAYLOAD_EXE_BASE = 0x00100000

	Build APL target. Make sure u-boot-dtb.bin and U-BT PayloadId
in build command. The output is Outputs/apl/Stitch_Components.zip:

$ python BuildLoader.py build apl -p "OsLoader.efi:LLDR:Lz4;u-boot-dtb.bin:U-BT:Lzma"

	Stitch IFWI.

Refer to Apollolake [https://slimbootloader.github.io/supported-hardware/apollo-lake-crb.html#stitching] page in Slim Bootloader document site:

$ python Platform/ApollolakeBoardPkg/Script/StitchLoader.py -i <Existing IFWI> -s Outputs/apl/Stitch_Components.zip -o <Output IFWI>

	Flash IFWI.

Use DediProg to flash IFWI. You should reach at U-Boot serial console.

Build Instruction to use ELF U-Boot

	Enable CONFIG_OF_EMBED:

$ vi configs/slimbootloader_defconfig
+CONFIG_OF_EMBED=y

	Build U-Boot:

$ make distclean
$ make slimbootloader_defconfig
$ make all
$ strip u-boot (removing symbol for reduced size)

	Do same steps as above

	Copy u-boot (ELF) to PayloadBins directory

	Update PayloadId ‘U-BT’ as above.

	No need to set PAYLOAD_LOAD_HIGH and PAYLOAD_EXE_BASE.

	Build Slim Bootloader. Use u-boot instead of u-boot-dtb.bin:

$ python BuildLoader.py build <qemu or apl> -p "OsLoader.efi:LLDR:Lz4;u-boot:U-BT:Lzma"

Renesas

	R0P7752C00000RZ board
	This board specification

	Configuration for This board

	This board specific command

	Update SPI ROM

	SH7753 EVB board
	This board specification

	Configuration for This board

	This board specific command

	Update SPI ROM

R0P7752C00000RZ board

This board specification

The R0P7752C00000RZ(board config name:sh7752evb) has the following device:

	SH7752 (SH-4A)

	DDR3-SDRAM 512MB

	SPI ROM 8MB

	Gigabit Ethernet controllers

	eMMC 4GB

Configuration for This board

You can select the configuration as follows:

	make sh7752evb_config

This board specific command

This board has the following its specific command:

	write_mac:

	You can write MAC address to SPI ROM.

Usage 1: Write MAC address

write_mac [GETHERC ch0] [GETHERC ch1]

For example:
=> write_mac 74:90:50:00:33:9e 74:90:50:00:33:9f

	We have to input the command as a single line (without carriage return)

	We have to reset after input the command.

Usage 2: Show current data

write_mac

For example:
=> write_mac
 GETHERC ch0 = 74:90:50:00:33:9e
 GETHERC ch1 = 74:90:50:00:33:9f

Update SPI ROM

	Copy u-boot image to RAM area.

	Probe SPI device.

=> sf probe 0
SF: Detected MX25L6405D with page size 64KiB, total 8 MiB

	Erase SPI ROM.

=> sf erase 0 80000

	Write u-boot image to SPI ROM.

=> sf write 0x48000000 0 80000

SH7753 EVB board

This board specification

The SH7753 EVB (board config name:sh7753evb) has the following device:

	SH7753 (SH-4A)

	DDR3-SDRAM 512MB

	SPI ROM 8MB

	Gigabit Ethernet controllers

	eMMC 4GB

Configuration for This board

You can select the configuration as follows:

	make sh7753evb_config

This board specific command

This board has the following its specific command:

	write_mac:

	You can write MAC address to SPI ROM.

Usage 1: Write MAC address

write_mac [GETHERC ch0] [GETHERC ch1]

For example:
=> write_mac 74:90:50:00:33:9e 74:90:50:00:33:9f

	We have to input the command as a single line (without carriage return)

	We have to reset after input the command.

Usage 2: Show current data

write_mac

For example:
=> write_mac
 GETHERC ch0 = 74:90:50:00:33:9e
 GETHERC ch1 = 74:90:50:00:33:9f

Update SPI ROM

	Copy u-boot image to RAM area.

	Probe SPI device.

=> sf probe 0
SF: Detected MX25L6405D with page size 64KiB, total 8 MiB

	Erase SPI ROM.

=> sf erase 0 80000

	Write u-boot image to SPI ROM.

=> sf write 0x48000000 0 80000

Rockchip

	ROCKCHIP
	About this

	Rockchip boards

	Building

	Flashing

	TODO

ROCKCHIP

About this

This document describes the information about Rockchip supported boards
and it’s usage steps.

Rockchip boards

Rockchip is SoC solutions provider for tablets & PCs, streaming media
TV boxes, AI audio & vision, IoT hardware.

A wide range of Rockchip SoCs with associated boardsare supported in
mainline U-Boot.

List of mainline supported rockchip boards:

	
	rk3288

	
	Evb-RK3288

	Firefly-RK3288

	mqmaker MiQi

	Phytec RK3288 PCM-947

	PopMetal-RK3288

	Radxa Rock 2 Square

	Tinker-RK3288

	Google Jerry

	Google Mickey

	Google Minnie

	Google Speedy

	Amarula Vyasa-RK3288

	
	rk3328

	
	Rockchip RK3328 EVB

	Pine64 Rock64

	
	rk3368

	
	GeekBox

	PX5 EVB

	Rockchip sheep board

	Theobroma Systems RK3368-uQ7 SoM

	
	rk3399

	
	96boards RK3399 Ficus

	96boards Rock960

	Firefly-RK3399 Board

	Firefly ROC-RK3399-PC Board

	FriendlyElec NanoPC-T4

	FriendlyElec NanoPi M4

	FriendlyARM NanoPi NEO4

	Google Bob

	Khadas Edge

	Khadas Edge-Captain

	Khadas Edge-V

	Orange Pi RK3399 Board

	Pine64 RockPro64

	Radxa ROCK Pi 4

	Rockchip RK3399 Evaluation Board

	Theobroma Systems RK3399-Q7 SoM

Building

TF-A

TF-A would require to build for ARM64 Rockchip SoCs platforms.

To build TF-A:

git clone https://github.com/ARM-software/arm-trusted-firmware.git
cd arm-trusted-firmware
make realclean
make CROSS_COMPILE=aarch64-linux-gnu- PLAT=rk3399

Specify the PLAT= with desired rockchip platform to build TF-A for.

U-Boot

To build rk3328 boards:

export BL31=/path/to/arm-trusted-firmware/to/bl31.elf
make evb-rk3328_defconfig
make

To build rk3288 boards:

make evb-rk3288_defconfig
make

To build rk3368 boards:

export BL31=/path/to/arm-trusted-firmware/to/bl31.elf
make evb-px5_defconfig
make

To build rk3399 boards:

export BL31=/path/to/arm-trusted-firmware/to/bl31.elf
make evb-rk3399_defconfig
make

Flashing

SD Card

All rockchip platforms, except rk3128 (which doesn’t use SPL) are now
supporting single boot image using binman and pad_cat.

To write an image that boots from an SD card (assumed to be /dev/sda):

sudo dd if=u-boot-rockchip.bin of=/dev/sda seek=64
sync

TODO

	Add rockchip idbloader image building

	Add rockchip TPL image building

	Document SPI flash boot

	Describe steps for eMMC flashing

	Add missing SoC’s with it boards list

SiFive

	HiFive Unleashed
	FU540-C000 RISC-V SoC

	Mainline support

	Building

	Flashing

	Booting

	Sample boot log from HiFive Unleashed board

HiFive Unleashed

FU540-C000 RISC-V SoC

The FU540-C000 is the world’s first 4+1 64-bit RISC-V SoC from SiFive.

The HiFive Unleashed development platform is based on FU540-C000 and capable
of running Linux.

Mainline support

The support for following drivers are already enabled:

	SiFive UART Driver.

	SiFive PRCI Driver for clock.

	Cadence MACB ethernet driver for networking support.

	SiFive SPI Driver.

	MMC SPI Driver for MMC/SD support.

TODO:

	U-Boot expects the serial console device entry to be present under /chosen
DT node. Without a serial console U-Boot will panic. Example:

chosen {
 stdout-path = "/soc/serial@10010000:115200";
};

Building

	Add the RISC-V toolchain to your PATH.

	Setup ARCH & cross compilation enviornment variable:

export ARCH=riscv
export CROSS_COMPILE=<riscv64 toolchain prefix>

	make sifive_fu540_defconfig

	make

Flashing

The current U-Boot port is supported in S-mode only and loaded from DRAM.

A prior stage M-mode firmware/bootloader (e.g OpenSBI) is required to
boot the u-boot.bin in S-mode and provide M-mode runtime services.

Currently, the u-boot.bin is used as a payload of the OpenSBI FW_PAYLOAD
firmware. We need to compile OpenSBI with below command:

make PLATFORM=sifive/fu540 FW_PAYLOAD_PATH=<path to u-boot-dtb.bin>

More detailed description of steps required to build FW_PAYLOAD firmware
is beyond the scope of this document. Please refer OpenSBI documenation.
(Note: OpenSBI git repo is at https://github.com/riscv/opensbi.git)

Once the prior stage firmware/bootloader binary is generated, it should be
copied to the first partition of the sdcard.

sudo dd if=<prior_stage_firmware_binary> of=/dev/disk2s1 bs=1024

Booting

Once you plugin the sdcard and power up, you should see the U-Boot prompt.

Sample boot log from HiFive Unleashed board

U-Boot 2019.07-00024-g350ff02f5b (Jul 22 2019 - 11:45:02 +0530)

CPU: rv64imafdc
Model: SiFive HiFive Unleashed A00
DRAM: 8 GiB
MMC: spi@10050000:mmc@0: 0
In: serial@10010000
Out: serial@10010000
Err: serial@10010000
Net: eth0: ethernet@10090000
Hit any key to stop autoboot: 0
=> version
U-Boot 2019.07-00024-g350ff02f5b (Jul 22 2019 - 11:45:02 +0530)

riscv64-linux-gcc.br_real (Buildroot 2018.11-rc2-00003-ga0787e9) 8.2.0
GNU ld (GNU Binutils) 2.31.1
=> mmc info
Device: spi@10050000:mmc@0
Manufacturer ID: 3
OEM: 5344
Name: SU08G
Bus Speed: 20000000
Mode: SD Legacy
Rd Block Len: 512
SD version 2.0
High Capacity: Yes
Capacity: 7.4 GiB
Bus Width: 1-bit
Erase Group Size: 512 Bytes
=> mmc part

Partition Map for MMC device 0 -- Partition Type: EFI

Part Start LBA End LBA Name
 Attributes
 Type GUID
 Partition GUID
 1 0x00000800 0x000107ff "bootloader"
 attrs: 0x0000000000000000
 type: 2e54b353-1271-4842-806f-e436d6af6985
 guid: 393bbd36-7111-491c-9869-ce24008f6403
 2 0x00040800 0x00ecdfde ""
 attrs: 0x0000000000000000
 type: 0fc63daf-8483-4772-8e79-3d69d8477de4
 guid: 7fc9a949-5480-48c7-b623-04923080757f

Now you can configure your networking, tftp server and use tftp boot method to
load uImage.

=> setenv ipaddr 10.206.7.133
=> setenv netmask 255.255.252.0
=> setenv serverip 10.206.4.143
=> setenv gateway 10.206.4.1
=> tftpboot ${kernel_addr_r} /sifive/fu540/Image
ethernet@10090000: PHY present at 0
ethernet@10090000: Starting autonegotiation...
ethernet@10090000: Autonegotiation complete
ethernet@10090000: link up, 1000Mbps full-duplex (lpa: 0x3c00)
Using ethernet@10090000 device
TFTP from server 10.206.4.143; our IP address is 10.206.7.133
Filename '/sifive/fu540/Image'.
Load address: 0x84000000
Loading: ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ##
 1.2 MiB/s
done
Bytes transferred = 8867100 (874d1c hex)
=> tftpboot ${ramdisk_addr_r} /sifive/fu540/uRamdisk
ethernet@10090000: PHY present at 0
ethernet@10090000: Starting autonegotiation...
ethernet@10090000: Autonegotiation complete
ethernet@10090000: link up, 1000Mbps full-duplex (lpa: 0x3c00)
Using ethernet@10090000 device
TFTP from server 10.206.4.143; our IP address is 10.206.7.133
Filename '/sifive/fu540/uRamdisk'.
Load address: 0x88300000
Loading: ###
 ###
 ###
 ###
 ###
 ###
 ###
 ##############
 418.9 KiB/s
done
Bytes transferred = 2398272 (249840 hex)
=> tftpboot ${fdt_addr_r} /sifive/fu540/hifive-unleashed-a00.dtb
ethernet@10090000: PHY present at 0
ethernet@10090000: Starting autonegotiation...
ethernet@10090000: Autonegotiation complete
ethernet@10090000: link up, 1000Mbps full-duplex (lpa: 0x7c00)
Using ethernet@10090000 device
TFTP from server 10.206.4.143; our IP address is 10.206.7.133
Filename '/sifive/fu540/hifive-unleashed-a00.dtb'.
Load address: 0x88000000
Loading: ##
 1000 Bytes/s
done
Bytes transferred = 5614 (15ee hex)
=> setenv bootargs "root=/dev/ram rw console=ttySIF0 ip=dhcp earlycon=sbi"
=> booti ${kernel_addr_r} ${ramdisk_addr_r} ${fdt_addr_r}
Loading init Ramdisk from Legacy Image at 88300000 ...
 Image Name: Linux RootFS
 Image Type: RISC-V Linux RAMDisk Image (uncompressed)
 Data Size: 2398208 Bytes = 2.3 MiB
 Load Address: 00000000
 Entry Point: 00000000
 Verifying Checksum ... OK
Flattened Device Tree blob at 88000000
 Booting using the fdt blob at 0x88000000
 Using Device Tree in place at 0000000088000000, end 00000000880045ed

Starting kernel ...

[0.000000] OF: fdt: Ignoring memory range 0x80000000 - 0x80200000
[0.000000] Linux version 5.3.0-rc1-00003-g460ac558152f (anup@anup-lab-machine) (gcc version 8.2.0 (Buildroot 2018.11-rc2-00003-ga0787e9)) #6 SMP Mon Jul 22 10:01:01 IST 2019
[0.000000] earlycon: sbi0 at I/O port 0x0 (options '')
[0.000000] printk: bootconsole [sbi0] enabled
[0.000000] Initial ramdisk at: 0x(____ptrval____) (2398208 bytes)
[0.000000] Zone ranges:
[0.000000] DMA32 [mem 0x0000000080200000-0x00000000ffffffff]
[0.000000] Normal [mem 0x0000000100000000-0x000000027fffffff]
[0.000000] Movable zone start for each node
[0.000000] Early memory node ranges
[0.000000] node 0: [mem 0x0000000080200000-0x000000027fffffff]
[0.000000] Initmem setup node 0 [mem 0x0000000080200000-0x000000027fffffff]
[0.000000] software IO TLB: mapped [mem 0xfbfff000-0xfffff000] (64MB)
[0.000000] CPU with hartid=0 is not available
[0.000000] CPU with hartid=0 is not available
[0.000000] elf_hwcap is 0x112d
[0.000000] percpu: Embedded 18 pages/cpu s34584 r8192 d30952 u73728
[0.000000] Built 1 zonelists, mobility grouping on. Total pages: 2067975
[0.000000] Kernel command line: root=/dev/ram rw console=ttySIF0 ip=dhcp earlycon=sbi
[0.000000] Dentry cache hash table entries: 1048576 (order: 11, 8388608 bytes, linear)
[0.000000] Inode-cache hash table entries: 524288 (order: 10, 4194304 bytes, linear)
[0.000000] Sorting __ex_table...
[0.000000] mem auto-init: stack:off, heap alloc:off, heap free:off
[0.000000] Memory: 8182308K/8386560K available (5916K kernel code, 368K rwdata, 1840K rodata, 213K init, 304K bss, 204252K reserved, 0K cma-reserved)
[0.000000] SLUB: HWalign=64, Order=0-3, MinObjects=0, CPUs=4, Nodes=1
[0.000000] rcu: Hierarchical RCU implementation.
[0.000000] rcu: RCU restricting CPUs from NR_CPUS=8 to nr_cpu_ids=4.
[0.000000] rcu: RCU calculated value of scheduler-enlistment delay is 25 jiffies.
[0.000000] rcu: Adjusting geometry for rcu_fanout_leaf=16, nr_cpu_ids=4
[0.000000] NR_IRQS: 0, nr_irqs: 0, preallocated irqs: 0
[0.000000] plic: mapped 53 interrupts with 4 handlers for 9 contexts.
[0.000000] riscv_timer_init_dt: Registering clocksource cpuid [0] hartid [1]
[0.000000] clocksource: riscv_clocksource: mask: 0xffffffffffffffff max_cycles: 0x1d854df40, max_idle_ns: 3526361616960 ns
[0.000006] sched_clock: 64 bits at 1000kHz, resolution 1000ns, wraps every 2199023255500ns
[0.008559] Console: colour dummy device 80x25
[0.012989] Calibrating delay loop (skipped), value calculated using timer frequency.. 2.00 BogoMIPS (lpj=4000)
[0.023104] pid_max: default: 32768 minimum: 301
[0.028273] Mount-cache hash table entries: 16384 (order: 5, 131072 bytes, linear)
[0.035765] Mountpoint-cache hash table entries: 16384 (order: 5, 131072 bytes, linear)
[0.045307] rcu: Hierarchical SRCU implementation.
[0.049875] smp: Bringing up secondary CPUs ...
[0.055729] smp: Brought up 1 node, 4 CPUs
[0.060599] devtmpfs: initialized
[0.064819] random: get_random_u32 called from bucket_table_alloc.isra.10+0x4e/0x160 with crng_init=0
[0.073720] clocksource: jiffies: mask: 0xffffffff max_cycles: 0xffffffff, max_idle_ns: 7645041785100000 ns
[0.083176] futex hash table entries: 1024 (order: 4, 65536 bytes, linear)
[0.090721] NET: Registered protocol family 16
[0.106319] vgaarb: loaded
[0.108670] SCSI subsystem initialized
[0.112515] usbcore: registered new interface driver usbfs
[0.117758] usbcore: registered new interface driver hub
[0.123167] usbcore: registered new device driver usb
[0.128905] clocksource: Switched to clocksource riscv_clocksource
[0.141239] NET: Registered protocol family 2
[0.145506] tcp_listen_portaddr_hash hash table entries: 4096 (order: 4, 65536 bytes, linear)
[0.153754] TCP established hash table entries: 65536 (order: 7, 524288 bytes, linear)
[0.163466] TCP bind hash table entries: 65536 (order: 8, 1048576 bytes, linear)
[0.173468] TCP: Hash tables configured (established 65536 bind 65536)
[0.179739] UDP hash table entries: 4096 (order: 5, 131072 bytes, linear)
[0.186627] UDP-Lite hash table entries: 4096 (order: 5, 131072 bytes, linear)
[0.194117] NET: Registered protocol family 1
[0.198417] RPC: Registered named UNIX socket transport module.
[0.203887] RPC: Registered udp transport module.
[0.208664] RPC: Registered tcp transport module.
[0.213429] RPC: Registered tcp NFSv4.1 backchannel transport module.
[0.219944] PCI: CLS 0 bytes, default 64
[0.224170] Unpacking initramfs...
[0.262347] Freeing initrd memory: 2336K
[0.266531] workingset: timestamp_bits=62 max_order=21 bucket_order=0
[0.280406] NFS: Registering the id_resolver key type
[0.284798] Key type id_resolver registered
[0.289048] Key type id_legacy registered
[0.293114] nfs4filelayout_init: NFSv4 File Layout Driver Registering...
[0.300262] NET: Registered protocol family 38
[0.304432] Block layer SCSI generic (bsg) driver version 0.4 loaded (major 254)
[0.311862] io scheduler mq-deadline registered
[0.316461] io scheduler kyber registered
[0.356421] Serial: 8250/16550 driver, 4 ports, IRQ sharing disabled
[0.363004] 10010000.serial: ttySIF0 at MMIO 0x10010000 (irq = 4, base_baud = 0) is a SiFive UART v0
[0.371468] printk: console [ttySIF0] enabled
[0.371468] printk: console [ttySIF0] enabled
[0.380223] printk: bootconsole [sbi0] disabled
[0.380223] printk: bootconsole [sbi0] disabled
[0.389589] 10011000.serial: ttySIF1 at MMIO 0x10011000 (irq = 1, base_baud = 0) is a SiFive UART v0
[0.398680] [drm] radeon kernel modesetting enabled.
[0.412395] loop: module loaded
[0.415214] sifive_spi 10040000.spi: mapped; irq=3, cs=1
[0.420628] sifive_spi 10050000.spi: mapped; irq=5, cs=1
[0.425897] libphy: Fixed MDIO Bus: probed
[0.429964] macb 10090000.ethernet: Registered clk switch 'sifive-gemgxl-mgmt'
[0.436743] macb: GEM doesn't support hardware ptp.
[0.441621] libphy: MACB_mii_bus: probed
[0.601316] Microsemi VSC8541 SyncE 10090000.ethernet-ffffffff:00: attached PHY driver [Microsemi VSC8541 SyncE] (mii_bus:phy_addr=10090000.ethernet-ffffffff:00, irq=POLL)
[0.615857] macb 10090000.ethernet eth0: Cadence GEM rev 0x10070109 at 0x10090000 irq 6 (70:b3:d5:92:f2:f3)
[0.625634] e1000e: Intel(R) PRO/1000 Network Driver - 3.2.6-k
[0.631381] e1000e: Copyright(c) 1999 - 2015 Intel Corporation.
[0.637382] ehci_hcd: USB 2.0 'Enhanced' Host Controller (EHCI) Driver
[0.643799] ehci-pci: EHCI PCI platform driver
[0.648261] ehci-platform: EHCI generic platform driver
[0.653497] ohci_hcd: USB 1.1 'Open' Host Controller (OHCI) Driver
[0.659599] ohci-pci: OHCI PCI platform driver
[0.664055] ohci-platform: OHCI generic platform driver
[0.669448] usbcore: registered new interface driver uas
[0.674575] usbcore: registered new interface driver usb-storage
[0.680642] mousedev: PS/2 mouse device common for all mice
[0.709493] mmc_spi spi1.0: SD/MMC host mmc0, no DMA, no WP, no poweroff, cd polling
[0.716615] usbcore: registered new interface driver usbhid
[0.722023] usbhid: USB HID core driver
[0.726738] NET: Registered protocol family 10
[0.731359] Segment Routing with IPv6
[0.734332] sit: IPv6, IPv4 and MPLS over IPv4 tunneling driver
[0.740687] NET: Registered protocol family 17
[0.744660] Key type dns_resolver registered
[0.806775] mmc0: host does not support reading read-only switch, assuming write-enable
[0.814020] mmc0: new SDHC card on SPI
[0.820137] mmcblk0: mmc0:0000 SU08G 7.40 GiB
[0.850220] mmcblk0: p1 p2
[3.821524] macb 10090000.ethernet eth0: link up (1000/Full)
[3.828938] IPv6: ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready
[3.848919] Sending DHCP requests .., OK
[6.252076] IP-Config: Got DHCP answer from 10.206.4.1, my address is 10.206.7.133
[6.259624] IP-Config: Complete:
[6.262831] device=eth0, hwaddr=70:b3:d5:92:f2:f3, ipaddr=10.206.7.133, mask=255.255.252.0, gw=10.206.4.1
[6.272809] host=dhcp-10-206-7-133, domain=sdcorp.global.sandisk.com, nis-domain=(none)
[6.281228] bootserver=10.206.126.11, rootserver=10.206.126.11, rootpath=
[6.281232] nameserver0=10.86.1.1, nameserver1=10.86.2.1
[6.294179] ntpserver0=10.86.1.1, ntpserver1=10.86.2.1
[6.301026] Freeing unused kernel memory: 212K
[6.304683] This architecture does not have kernel memory protection.
[6.311121] Run /init as init process
 _ _
 | ||_|
 | | _ ____ _ _ _ _
 | || | _ \| | | |\ \/ /
 | || | | | | |_| |/ \
 |_||_|_| |_|____|_/_/

 Busybox Rootfs

Please press Enter to activate this console.
/ #

STMicroelectronics

	STM32MP15x boards
	Supported devices

	Boot Sequences

	Device Tree Selection

	Build Procedure

	Switch Setting for Boot Mode

	Prepare an SD card

	Prepare eMMC

	MAC Address

	Coprocessor firmware

	DFU support

STM32MP15x boards

This is a quick instruction for setup STM32MP15x boards.

Supported devices

U-Boot supports STMP32MP15x SoCs:

	STM32MP157

	STM32MP153

	STM32MP151

The STM32MP15x is a Cortex-A MPU aimed at various applications.

It features:

	Dual core Cortex-A7 application core (Single on STM32MP151)

	2D/3D image composition with GPU (only on STM32MP157)

	Standard memories interface support

	Standard connectivity, widely inherited from the STM32 MCU family

	Comprehensive security support

Everything is supported in Linux but U-Boot is limited to:

	UART

	SD card/MMC controller (SDMMC)

	NAND controller (FMC)

	NOR controller (QSPI)

	USB controller (OTG DWC2)

	Ethernet controller

And the necessary drivers

	I2C

	STPMIC1 (PMIC and regulator)

	Clock, Reset, Sysreset

	Fuse

Currently the following boards are supported:

	stm32mp157a-avenger96.dts

	stm32mp157a-dk1.dts

	stm32mp157c-dk2.dts

	stm32mp157c-ed1.dts

	stm32mp157c-ev1.dts

Boot Sequences

3 boot configurations are supported with:

	ROM
code

	FSBL

	SSBL

	OS

	First Stage Bootloader

	Second Stage Bootloader

	Linux Kernel

	embedded RAM

	DDR

The Trusted boot chain

defconfig_file : stm32mp15_trusted_defconfig

	ROM code

	FSBL

	SSBL

	OS

	Trusted Firmware-A (TF-A)

	U-Boot

	Linux

	TrustZone

	TF-A secure monitor

TF-A performs a full initialization of Secure peripherals and installs a
secure monitor (BL32=SPMin).

U-Boot is running in normal world and uses TF-A monitor to access
to secure resources.

The Trusted boot chain with OP-TEE

defconfig_file : stm32mp15_optee_defconfig

	ROM code

	FSBL

	SSBL

	OS

	Trusted Firmware-A (TF-A)

	U-Boot

	Linux

	TrustZone

	OP-TEE

TF-A performs a full initialization of Secure peripherals and installs OP-TEE
from specific partitions (teeh, teed, teex).

U-Boot is running in normal world and uses OP-TEE monitor to access
to secure resources.

The Basic boot chain

defconfig_file : stm32mp15_basic_defconfig

	ROM code

	FSBL

	SSBL

	OS

	U-Boot SPL

	U-Boot

	Linux

	TrustZone

	
	PSCI from U-Boot

SPL has limited security initialization

U-Boot is running in secure mode and provide a secure monitor to the kernel
with only PSCI support (Power State Coordination Interface defined by ARM).

All the STM32MP15x boards supported by U-Boot use the same generic board
stm32mp1 which support all the bootable devices.

Each board is configured only with the associated device tree.

Device Tree Selection

You need to select the appropriate device tree for your board,
the supported device trees for STM32MP15x are:

	ev1: eval board with pmic stpmic1 (ev1 = mother board + daughter ed1)

	stm32mp157c-ev1

	ed1: daughter board with pmic stpmic1

	stm32mp157c-ed1

	dk1: Discovery board

	stm32mp157a-dk1

	dk2: Discovery board = dk1 with a BT/WiFI combo and a DSI panel

	stm32mp157c-dk2

	avenger96: Avenger96 board from Arrow Electronics

	stm32mp157a-avenger96

Build Procedure

	Install the required tools for U-Boot

	install package needed in U-Boot makefile
(libssl-dev, swig, libpython-dev…)

	install ARMv7 toolchain for 32bit Cortex-A (from Linaro,
from SDK for STM32MP15x, or any crosstoolchains from your distribution)
(you can use any gcc cross compiler compatible with U-Boot)

	Set the cross compiler:

export CROSS_COMPILE=/path/to/toolchain/arm-linux-gnueabi-

	Select the output directory (optional):

export KBUILD_OUTPUT=/path/to/output

for example: use one output directory for each configuration:

export KBUILD_OUTPUT=stm32mp15_trusted
export KBUILD_OUTPUT=stm32mp15_optee
export KBUILD_OUTPUT=stm32mp15_basic

you can build outside of code directory:

export KBUILD_OUTPUT=../build/stm32mp15_trusted

	Configure U-Boot:

make <defconfig_file>

with <defconfig_file>:

	For trusted boot mode : stm32mp15_trusted_defconfig

	For trusted with OP-TEE boot mode : stm32mp15_optee_defconfig

	For basic boot mode: stm32mp15_basic_defconfig

	Configure the device-tree and build the U-Boot image:

make DEVICE_TREE=<name> all

Examples:

	trusted boot on ev1:

export KBUILD_OUTPUT=stm32mp15_trusted
make stm32mp15_trusted_defconfig
make DEVICE_TREE=stm32mp157c-ev1 all

	trusted with OP-TEE boot on dk2:

export KBUILD_OUTPUT=stm32mp15_optee
make stm32mp15_optee_defconfig
make DEVICE_TREE=stm32mp157c-dk2 all

	basic boot on ev1:

export KBUILD_OUTPUT=stm32mp15_basic
make stm32mp15_basic_defconfig
make DEVICE_TREE=stm32mp157c-ev1 all

	basic boot on ed1:

export KBUILD_OUTPUT=stm32mp15_basic
make stm32mp15_basic_defconfig
make DEVICE_TREE=stm32mp157c-ed1 all

	basic boot on dk1:

export KBUILD_OUTPUT=stm32mp15_basic
make stm32mp15_basic_defconfig
make DEVICE_TREE=stm32mp157a-dk1 all

	basic boot on avenger96:

export KBUILD_OUTPUT=stm32mp15_basic
make stm32mp15_basic_defconfig
make DEVICE_TREE=stm32mp157a-avenger96 all

	Output files

BootRom and TF-A expect binaries with STM32 image header
SPL expects file with U-Boot uImage header

So in the output directory (selected by KBUILD_OUTPUT),
you can found the needed files:

	For Trusted boot (with or without OP-TEE)

	FSBL = tf-a.stm32 (provided by TF-A compilation)

	SSBL = u-boot.stm32

	For Basic boot

	FSBL = spl/u-boot-spl.stm32

	SSBL = u-boot.img

Switch Setting for Boot Mode

You can select the boot mode, on the board with one switch, to select
the boot pin values = BOOT0, BOOT1, BOOT2

	Boot Mode

	BOOT2

	BOOT1

	BOOT0

	Recovery

	0

	0

	0

	NOR

	0

	0

	1

	eMMC

	0

	1

	0

	NAND

	0

	1

	1

	Reserved

	1

	0

	0

	SD-Card

	1

	0

	1

	Recovery

	1

	1

	0

	SPI-NAND

	1

	1

	1

	on the daugther board ed1 = MB1263 with the switch SW1

	on Avenger96 with switch S3 (NOR and SPI-NAND are not applicable)

	on board DK1/DK2 with the switch SW1 = BOOT0, BOOT2
with only 2 pins available (BOOT1 is forced to 0 and NOR not supported),
the possible value becomes:

	Boot Mode

	BOOT2

	BOOT0

	Recovery

	0

	0

	NOR (NA)

	0

	1

	Reserved

	1

	0

	SD-Card

	1

	1

Recovery is a boot from serial link (UART/USB) and it is used with
STM32CubeProgrammer tool to load executable in RAM and to update the flash
devices available on the board (NOR/NAND/eMMC/SD card).

The communication between HOST and board is based on

	for UARTs : the uart protocol used with all MCU STM32

	for USB : based on USB DFU 1.1 (without the ST extensions used on MCU STM32)

Prepare an SD card

The minimal requirements for STMP32MP15x boot up to U-Boot are:

	GPT partitioning (with gdisk or with sgdisk)

	2 fsbl partitions, named fsbl1 and fsbl2, size at least 256KiB

	one ssbl partition for U-Boot

Then the minimal GPT partition is:

	Num

	Name

	Size

	Content

	1

	fsbl1

	256 KiB

	TF-A or SPL

	2

	fsbl2

	256 KiB

	TF-A or SPL

	3

	ssbl

	enought

	U-Boot

	4

	<any>

	<any>

	Rootfs

Add a 4th partition (Rootfs) marked bootable with a file extlinux.conf
following the Generic Distribution feature (doc/README.distro for use).

According the used card reader select the correct block device
(for example /dev/sdx or /dev/mmcblk0).

In the next example, it is /dev/mmcblk0

For example: with gpt table with 128 entries

	remove previous formatting:

sgdisk -o /dev/<SD card dev>

	create minimal image:

sgdisk --resize-table=128 -a 1 \
-n 1:34:545 -c 1:fsbl1 \
-n 2:546:1057 -c 2:fsbl2 \
-n 3:1058:5153 -c 3:ssbl \
-n 4:5154: -c 4:rootfs \
-p /dev/<SD card dev>

With other partition for kernel one partition rootfs for kernel.

	copy the FSBL (2 times) and SSBL file on the correct partition.
in this example in partition 1 to 3

for basic boot mode : <SD card dev> = /dev/mmcblk0:

dd if=u-boot-spl.stm32 of=/dev/mmcblk0p1
dd if=u-boot-spl.stm32 of=/dev/mmcblk0p2
dd if=u-boot.img of=/dev/mmcblk0p3

for trusted boot mode:

dd if=tf-a.stm32 of=/dev/mmcblk0p1
dd if=tf-a.stm32 of=/dev/mmcblk0p2
dd if=u-boot.stm32 of=/dev/mmcblk0p3

To boot from SD card, select BootPinMode = 1 0 1 and reset.

Prepare eMMC

You can use U-Boot to copy binary in eMMC.

In the next example, you need to boot from SD card and the images
(u-boot-spl.stm32, u-boot.img) are presents on SD card (mmc 0)
in ext4 partition 4 (bootfs).

To boot from SD card, select BootPinMode = 1 0 1 and reset.

Then you update the eMMC with the next U-Boot command :

	prepare GPT on eMMC,
example with 2 partitions, bootfs and roots:

setenv emmc_part "name=ssbl,size=2MiB;name=bootfs,type=linux,bootable,size=64MiB;name=rootfs,type=linux,size=512"
gpt write mmc 1 ${emmc_part}

	copy SPL on eMMC on firts boot partition
(SPL max size is 256kB, with LBA 512, 0x200):

ext4load mmc 0:4 0xC0000000 u-boot-spl.stm32
mmc dev 1
mmc partconf 1 1 1 1
mmc write ${fileaddr} 0 200
mmc partconf 1 1 1 0

	copy U-Boot in first GPT partition of eMMC:

ext4load mmc 0:4 0xC0000000 u-boo t.img
mmc dev 1
part start mmc 1 1 partstart
mmc write ${fileaddr} ${partstart} ${filesize}

To boot from eMMC, select BootPinMode = 0 1 0 and reset.

MAC Address

Please read doc/README.enetaddr for the implementation guidelines for mac id
usage. Basically, environment has precedence over board specific storage.

For STMicroelectonics board, it is retrieved in STM32MP15x OTP :

	OTP_57[31:0] = MAC_ADDR[31:0]

	OTP_58[15:0] = MAC_ADDR[47:32]

To program a MAC address on virgin OTP words above, you can use the fuse command
on bank 0 to access to internal OTP:

Prerequisite: check if a MAC address isn’t yet programmed in OTP

	check OTP: their value must be equal to 0

STM32MP> fuse sense 0 57 2
Sensing bank 0:
Word 0x00000039: 00000000 00000000

	check environment variable

STM32MP> env print ethaddr
Error: “ethaddr” not defined

Example to set mac address “12:34:56:78:9a:bc”

	Write OTP:

STM32MP> fuse prog -y 0 57 0x78563412 0x0000bc9a

	Read OTP:

STM32MP> fuse sense 0 57 2
Sensing bank 0:
Word 0x00000039: 78563412 0000bc9a

	next REBOOT, in the trace:

Setting environment from OTP MAC address = "12:34:56:78:9a:bc"

	check env update:

STM32MP> env print ethaddr
ethaddr=12:34:56:78:9a:bc

Warning

This command can’t be executed twice on the same board as
OTP are protected. It is already done for the board
provided by STMicroelectronics.

Coprocessor firmware

U-Boot can boot the coprocessor before the kernel (coprocessor early boot).

	Manuallly by using rproc commands (update the bootcmd)

Configurations:

env set name_copro "rproc-m4-fw.elf"
env set dev_copro 0
env set loadaddr_copro 0xC1000000

Load binary from bootfs partition (number 4) on SD card (mmc 0):

ext4load mmc 0:4 ${loadaddr_copro} ${name_copro}

=> ${filesize} variable is updated with the size of the loaded file.

Start M4 firmware with remote proc command:

rproc init
rproc load ${dev_copro} ${loadaddr_copro} ${filesize}
rproc start ${dev_copro}"00270033

	Automatically by using FIT feature and generic DISTRO bootcmd

see examples in the board stm32mp1 directory: fit_copro_kernel_dtb.its

Generate FIT including kernel + device tree + M4 firmware with cfg with M4 boot:

$> mkimage -f fit_copro_kernel_dtb.its fit_copro_kernel_dtb.itb

Then using DISTRO configuration file: see extlinux.conf to select the correct
configuration:

	stm32mp157c-ev1-m4

	stm32mp157c-dk2-m4

DFU support

The DFU is supported on ST board.

The env variable dfu_alt_info is automatically build, and all
the memory present on the ST boards are exported.

The dfu mode is started by the command:

STM32MP> dfu 0

On EV1 board, booting from SD card, without OP-TEE:

STM32MP> dfu 0 list
DFU alt settings list:
dev: RAM alt: 0 name: uImage layout: RAM_ADDR
dev: RAM alt: 1 name: devicetree.dtb layout: RAM_ADDR
dev: RAM alt: 2 name: uramdisk.image.gz layout: RAM_ADDR
dev: eMMC alt: 3 name: sdcard_fsbl1 layout: RAW_ADDR
dev: eMMC alt: 4 name: sdcard_fsbl2 layout: RAW_ADDR
dev: eMMC alt: 5 name: sdcard_ssbl layout: RAW_ADDR
dev: eMMC alt: 6 name: sdcard_bootfs layout: RAW_ADDR
dev: eMMC alt: 7 name: sdcard_vendorfs layout: RAW_ADDR
dev: eMMC alt: 8 name: sdcard_rootfs layout: RAW_ADDR
dev: eMMC alt: 9 name: sdcard_userfs layout: RAW_ADDR
dev: eMMC alt: 10 name: emmc_fsbl1 layout: RAW_ADDR
dev: eMMC alt: 11 name: emmc_fsbl2 layout: RAW_ADDR
dev: eMMC alt: 12 name: emmc_ssbl layout: RAW_ADDR
dev: eMMC alt: 13 name: emmc_bootfs layout: RAW_ADDR
dev: eMMC alt: 14 name: emmc_vendorfs layout: RAW_ADDR
dev: eMMC alt: 15 name: emmc_rootfs layout: RAW_ADDR
dev: eMMC alt: 16 name: emmc_userfs layout: RAW_ADDR
dev: MTD alt: 17 name: nor_fsbl1 layout: RAW_ADDR
dev: MTD alt: 18 name: nor_fsbl2 layout: RAW_ADDR
dev: MTD alt: 19 name: nor_ssbl layout: RAW_ADDR
dev: MTD alt: 20 name: nor_env layout: RAW_ADDR
dev: MTD alt: 21 name: nand_fsbl layout: RAW_ADDR
dev: MTD alt: 22 name: nand_ssbl1 layout: RAW_ADDR
dev: MTD alt: 23 name: nand_ssbl2 layout: RAW_ADDR
dev: MTD alt: 24 name: nand_UBI layout: RAW_ADDR
dev: VIRT alt: 25 name: OTP layout: RAW_ADDR
dev: VIRT alt: 26 name: PMIC layout: RAW_ADDR

All the supported device are exported for dfu-util tool:

$> dfu-util -l
Found DFU: [0483:5720] ver=9999, devnum=99, cfg=1, intf=0, alt=26, name="PMIC", serial="002700333338511934383330"
Found DFU: [0483:5720] ver=9999, devnum=99, cfg=1, intf=0, alt=25, name="OTP", serial="002700333338511934383330"
Found DFU: [0483:5720] ver=9999, devnum=99, cfg=1, intf=0, alt=24, name="nand_UBI", serial="002700333338511934383330"
Found DFU: [0483:5720] ver=9999, devnum=99, cfg=1, intf=0, alt=23, name="nand_ssbl2", serial="002700333338511934383330"
Found DFU: [0483:5720] ver=9999, devnum=99, cfg=1, intf=0, alt=22, name="nand_ssbl1", serial="002700333338511934383330"
Found DFU: [0483:5720] ver=9999, devnum=99, cfg=1, intf=0, alt=21, name="nand_fsbl", serial="002700333338511934383330"
Found DFU: [0483:5720] ver=9999, devnum=99, cfg=1, intf=0, alt=20, name="nor_env", serial="002700333338511934383330"
Found DFU: [0483:5720] ver=9999, devnum=99, cfg=1, intf=0, alt=19, name="nor_ssbl", serial="002700333338511934383330"
Found DFU: [0483:5720] ver=9999, devnum=99, cfg=1, intf=0, alt=18, name="nor_fsbl2", serial="002700333338511934383330"
Found DFU: [0483:5720] ver=9999, devnum=99, cfg=1, intf=0, alt=17, name="nor_fsbl1", serial="002700333338511934383330"
Found DFU: [0483:5720] ver=9999, devnum=99, cfg=1, intf=0, alt=16, name="emmc_userfs", serial="002700333338511934383330"
Found DFU: [0483:5720] ver=9999, devnum=99, cfg=1, intf=0, alt=15, name="emmc_rootfs", serial="002700333338511934383330"
Found DFU: [0483:5720] ver=9999, devnum=99, cfg=1, intf=0, alt=14, name="emmc_vendorfs", serial="002700333338511934383330"
Found DFU: [0483:5720] ver=9999, devnum=99, cfg=1, intf=0, alt=13, name="emmc_bootfs", serial="002700333338511934383330"
Found DFU: [0483:5720] ver=9999, devnum=99, cfg=1, intf=0, alt=12, name="emmc_ssbl", serial="002700333338511934383330"
Found DFU: [0483:5720] ver=9999, devnum=99, cfg=1, intf=0, alt=11, name="emmc_fsbl2", serial="002700333338511934383330"
Found DFU: [0483:5720] ver=9999, devnum=99, cfg=1, intf=0, alt=10, name="emmc_fsbl1", serial="002700333338511934383330"
Found DFU: [0483:5720] ver=9999, devnum=99, cfg=1, intf=0, alt=9, name="sdcard_userfs", serial="002700333338511934383330"
Found DFU: [0483:5720] ver=9999, devnum=99, cfg=1, intf=0, alt=8, name="sdcard_rootfs", serial="002700333338511934383330"
Found DFU: [0483:5720] ver=9999, devnum=99, cfg=1, intf=0, alt=7, name="sdcard_vendorfs", serial="002700333338511934383330"
Found DFU: [0483:5720] ver=9999, devnum=99, cfg=1, intf=0, alt=6, name="sdcard_bootfs", serial="002700333338511934383330"
Found DFU: [0483:5720] ver=9999, devnum=99, cfg=1, intf=0, alt=5, name="sdcard_ssbl", serial="002700333338511934383330"
Found DFU: [0483:5720] ver=9999, devnum=99, cfg=1, intf=0, alt=4, name="sdcard_fsbl2", serial="002700333338511934383330"
Found DFU: [0483:5720] ver=9999, devnum=99, cfg=1, intf=0, alt=3, name="sdcard_fsbl1", serial="002700333338511934383330"
Found DFU: [0483:5720] ver=9999, devnum=99, cfg=1, intf=0, alt=2, name="uramdisk.image.gz", serial="002700333338511934383330"
Found DFU: [0483:5720] ver=9999, devnum=99, cfg=1, intf=0, alt=1, name="devicetree.dtb", serial="002700333338511934383330"
Found DFU: [0483:5720] ver=9999, devnum=99, cfg=1, intf=0, alt=0, name="uImage", serial="002700333338511934383330"

You can update the boot device:

	SD card (mmc0)

$> dfu-util -d 0483:5720 -a 3 -D tf-a-stm32mp157c-ev1-trusted.stm32
$> dfu-util -d 0483:5720 -a 4 -D tf-a-stm32mp157c-ev1-trusted.stm32
$> dfu-util -d 0483:5720 -a 5 -D u-boot-stm32mp157c-ev1-trusted.img
$> dfu-util -d 0483:5720 -a 6 -D st-image-bootfs-openstlinux-weston-stm32mp1.ext4
$> dfu-util -d 0483:5720 -a 7 -D st-image-vendorfs-openstlinux-weston-stm32mp1.ext4
$> dfu-util -d 0483:5720 -a 8 -D st-image-weston-openstlinux-weston-stm32mp1.ext4
$> dfu-util -d 0483:5720 -a 9 -D st-image-userfs-openstlinux-weston-stm32mp1.ext4

	EMMC (mmc1):

$> dfu-util -d 0483:5720 -a 10 -D tf-a-stm32mp157c-ev1-trusted.stm32
$> dfu-util -d 0483:5720 -a 11 -D tf-a-stm32mp157c-ev1-trusted.stm32
$> dfu-util -d 0483:5720 -a 12 -D u-boot-stm32mp157c-ev1-trusted.img
$> dfu-util -d 0483:5720 -a 13 -D st-image-bootfs-openstlinux-weston-stm32mp1.ext4
$> dfu-util -d 0483:5720 -a 14 -D st-image-vendorfs-openstlinux-weston-stm32mp1.ext4
$> dfu-util -d 0483:5720 -a 15 -D st-image-weston-openstlinux-weston-stm32mp1.ext4
$> dfu-util -d 0483:5720 -a 16 -D st-image-userfs-openstlinux-weston-stm32mp1.ext4

	NOR:

$> dfu-util -d 0483:5720 -a 17 -D tf-a-stm32mp157c-ev1-trusted.stm32
$> dfu-util -d 0483:5720 -a 18 -D tf-a-stm32mp157c-ev1-trusted.stm32
$> dfu-util -d 0483:5720 -a 19 -D u-boot-stm32mp157c-ev1-trusted.img

	NAND (UBI partition used for NAND only boot or NOR + NAND boot):

$> dfu-util -d 0483:5720 -a 21 -D tf-a-stm32mp157c-ev1-trusted.stm32
$> dfu-util -d 0483:5720 -a 22 -D u-boot-stm32mp157c-ev1-trusted.img
$> dfu-util -d 0483:5720 -a 23 -D u-boot-stm32mp157c-ev1-trusted.img
$> dfu-util -d 0483:5720 -a 24 -D st-image-weston-openstlinux-weston-stm32mp1_nand_4_256_multivolume.ubi

	you can also dump the OTP and the PMIC NVM with:

$> dfu-util -d 0483:5720 -a 25 -U otp.bin
$> dfu-util -d 0483:5720 -a 26 -U pmic.bin

Toradex

	Apalis iMX8QM V1.0B Module
	Quick Start

	Get and Build the ARM Trusted Firmware

	Get scfw_tcm.bin and ahab-container.img

	Build U-Boot

	Load the U-Boot Binary Using UUU

	Flash the U-Boot Binary into the eMMC

	Colibri iMX7
	Quick Start

	Build U-Boot

	IMX image adjustments prior to flashing

	Flash U-Boot IMX image to eMMC

	Flash U-Boot IMX image to NAND

	Using update_uboot script

	Colibri iMX8QXP V1.0B Module
	Quick Start

	Get and Build the ARM Trusted Firmware

	Get scfw_tcm.bin and ahab-container.img

	Build U-Boot

	Load the U-Boot Binary Using UUU

	Flash the U-Boot Binary into the eMMC

	Verdin iMX8M Mini Module
	Quick Start

	Get and Build the ARM Trusted Firmware (Trusted Firmware A)

	Get the DDR Firmware

	Build U-Boot

	Flash to eMMC

	Boot

Apalis iMX8QM V1.0B Module

Quick Start

	Build the ARM trusted firmware binary

	Get scfw_tcm.bin and ahab-container.img

	Build U-Boot

	Load U-Boot binary using uuu

	Flash U-Boot binary into the eMMC

	Boot

Get and Build the ARM Trusted Firmware

$ git clone -b imx_4.14.78_1.0.0_ga https://source.codeaurora.org/external/imx/imx-atf
$ cd imx-atf/
$ make PLAT=imx8qm bl31

Get scfw_tcm.bin and ahab-container.img

$ wget https://github.com/toradex/meta-fsl-bsp-release/blob/toradex-sumo-4.14.78-1.0.0_ga-bringup/imx/meta-bsp/recipes-
 bsp/imx-sc-firmware/files/mx8qm-apalis-scfw-tcm.bin?raw=true
$ mv mx8qm-apalis-scfw-tcm.bin\?raw\=true mx8qm-apalis-scfw-tcm.bin
$ wget https://www.nxp.com/lgfiles/NMG/MAD/YOCTO/firmware-imx-8.0.bin
$ chmod +x firmware-imx-8.0.bin
$./firmware-imx-8.0.bin

Copy the following binaries to the U-Boot folder:

$ cp imx-atf/build/imx8qm/release/bl31.bin .
$ cp u-boot/u-boot.bin .

Copy the following firmware to the U-Boot folder:

$ cp firmware-imx-8.0/firmware/seco/ahab-container.img .

Build U-Boot

$ make apalis-imx8qm_defconfig
$ make u-boot-dtb.imx

Load the U-Boot Binary Using UUU

Get the latest version of the universal update utility (uuu) aka mfgtools 3.0:

https://community.nxp.com/external-link.jspa?url=https%3A%2F%2Fgithub.com%2FNXPmicro%2Fmfgtools%2Freleases

Put the module into USB recovery aka serial downloader mode, connect USB device
to your host and execute uuu:

sudo ./uuu u-boot/u-boot-dtb.imx

Flash the U-Boot Binary into the eMMC

Burn the u-boot-dtb.imx binary to the primary eMMC hardware boot area
partition and boot:

load mmc 1:1 $loadaddr u-boot-dtb.imx
setexpr blkcnt ${filesize} + 0x1ff && setexpr blkcnt ${blkcnt} / 0x200
mmc dev 0 1
mmc write ${loadaddr} 0x0 ${blkcnt}

Colibri iMX7

Quick Start

	Build U-Boot

	NAND IMX image adjustments before flashing

	Flashing manually U-Boot to eMMC

	Flashing manually U-Boot to NAND

	Using update_uboot script

Build U-Boot

$ export CROSS_COMPILE=arm-linux-gnueabi-
$ export ARCH=arm
$ make colibri_imx7_emmc_defconfig # For NAND: colibri_imx7_defconfig
$ make

After build succeeds, you will obtain final u-boot-dtb.imx IMX specific
image, ready for flashing (but check next section for additional
adjustments).

Final IMX program image includes (section 6.6.7 from IMX7DRM [https://www.nxp.com/webapp/Download?colCode=IMX7DRM]):

	Image vector table (IVT) for BootROM

	Boot data -indicates the program image location, program image size
in bytes, and the plugin flag.

	Device configuration data

	User image: U-Boot image (u-boot-dtb.bin)

IMX image adjustments prior to flashing

1. U-Boot for both Colibri iMX7 NAND and eMMC versions
is built with HABv4 support (AN4581.pdf [https://www.nxp.com/docs/en/application-note/AN4581.pdf])
enabled by default, which requires to generate a proper
Command Sequence File (CSF) by srktool from NXP (not included in the
U-Boot tree, check additional details in introduction_habv4.txt)
and concatenate it to the final u-boot-dtb.imx.

2. In case if you don’t want to generate a proper CSF (for any reason),
you still need to pad the IMX image so i has the same size as specified in
in Boot Data section of IMX image.
To obtain this value, run:

$ od -X -N 0x30 u-boot-dtb.imx
0000000 402000d1 87800000 00000000 877ff42c
0000020 877ff420 877ff400 878a5000 00000000
 ^^^^^^^^
0000040 877ff000 000a8060 00000000 40b401d2
 ^^^^^^^^ ^^^^^^^^

Where:

	877ff400 - IVT self address

	877ff000 - Program image address

	000a8060 - Program image size

To calculate the padding:

	IVT offset = 0x877ff400 - 0x877ff000 = 0x400

	Program image size = 0xa8060 - 0x400 = 0xa7c60

and then pad the image:

$ objcopy -I binary -O binary --pad-to 0xa7c60 --gap-fill=0x00 \
 u-boot-dtb.imx u-boot-dtb.imx.zero-padded

3. Also, according to requirement from 6.6.7.1, the final image
should have 0x400 offset for initial IVT table.

For eMMC setup we handle this by flashing it to 0x400, howewer
for NAND setup we adjust the image prior to flashing, adding padding in the
beginning of the image.

$ dd if=u-boot-dtb.imx.zero-padded of=u-boot-dtb.imx.ready bs=1024 seek=1

Flash U-Boot IMX image to eMMC

Flash the u-boot-dtb.imx.zero-padded binary to the primary eMMC hardware
boot area partition:

=> load mmc 1:1 $loadaddr u-boot-dtb.imx.zero-padded
=> setexpr blkcnt ${filesize} + 0x1ff && setexpr blkcnt ${blkcnt} / 0x200
=> mmc dev 0 1
=> mmc write ${loadaddr} 0x2 ${blkcnt}

Flash U-Boot IMX image to NAND

=> load mmc 1:1 $loadaddr u-boot-dtb.imx.ready
=> nand erase.part u-boot1
=> nand write ${loadaddr} u-boot1 ${filesize}
=> nand erase.part u-boot2
=> nand write ${loadaddr} u-boot2 ${filesize}

Using update_uboot script

You can also usb U-Boot env update_uboot script,
which wraps all eMMC/NAND specific command invocation:

=> load mmc 1:1 $loadaddr u-boot-dtb.imx.ready
=> run update_uboot

Colibri iMX8QXP V1.0B Module

Quick Start

	Build the ARM trusted firmware binary

	Get scfw_tcm.bin and ahab-container.img

	Build U-Boot

	Load U-Boot binary using uuu

	Flash U-Boot binary into the eMMC

	Boot

Get and Build the ARM Trusted Firmware

$ git clone -b imx_4.14.78_1.0.0_ga https://source.codeaurora.org/external/imx/imx-atf
$ cd imx-atf/
$ make PLAT=imx8qxp bl31

Get scfw_tcm.bin and ahab-container.img

$ wget https://github.com/toradex/meta-fsl-bsp-release/blob/
 toradex-sumo-4.14.78-1.0.0_ga-bringup/imx/meta-bsp/recipes-
 bsp/imx-sc-firmware/files/mx8qx-colibri-scfw-tcm.bin?raw=true
$ mv mx8qx-colibri-scfw-tcm.bin\?raw\=true mx8qx-colibri-scfw-tcm.bin
$ wget https://www.nxp.com/lgfiles/NMG/MAD/YOCTO/firmware-imx-8.0.bin
$ chmod +x firmware-imx-8.0.bin
$./firmware-imx-8.0.bin

Copy the following binaries to the U-Boot folder:

$ cp imx-atf/build/imx8qxp/release/bl31.bin .
$ cp u-boot/u-boot.bin .

Copy the following firmware to the U-Boot folder:

$ cp firmware-imx-8.0/firmware/seco/ahab-container.img .

Build U-Boot

$ make colibri-imx8qxp_defconfig
$ make u-boot-dtb.imx

Load the U-Boot Binary Using UUU

Get the latest version of the universal update utility (uuu) aka mfgtools 3.0:

https://community.nxp.com/external-link.jspa?url=https%3A%2F%2Fgithub.com%2FNXPmicro%2Fmfgtools%2Freleases

Put the module into USB recovery aka serial downloader mode, connect USB device
to your host and execute uuu:

sudo ./uuu u-boot/u-boot-dtb.imx

Flash the U-Boot Binary into the eMMC

Burn the u-boot-dtb.imx binary to the primary eMMC hardware boot area partition:

load mmc 1:1 $loadaddr u-boot-dtb.imx
setexpr blkcnt ${filesize} + 0x1ff && setexpr blkcnt ${blkcnt} / 0x200
mmc dev 0 1
mmc write ${loadaddr} 0x0 ${blkcnt}

Verdin iMX8M Mini Module

Quick Start

	Build the ARM trusted firmware binary

	Get the DDR firmware

	Build U-Boot

	Flash to eMMC

	Boot

Get and Build the ARM Trusted Firmware (Trusted Firmware A)

$ echo "Downloading and building TF-A..."
$ git clone https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git
$ cd trusted-firmware-a

Then build ATF (TF-A):

$ make PLAT=imx8mm IMX_BOOT_UART_BASE=0x30860000 bl31
$ cp build/imx8mm/release/bl31.bin ../

Get the DDR Firmware

$ cd ..
$ wget https://www.nxp.com/lgfiles/NMG/MAD/YOCTO/firmware-imx-8.4.1.bin
$ chmod +x firmware-imx-8.4.1.bin
$./firmware-imx-8.4.1.bin
$ cp firmware-imx-8.4.1/firmware/ddr/synopsys/lpddr4*.bin ./

Build U-Boot

$ export CROSS_COMPILE=aarch64-linux-gnu-
$ export ATF_LOAD_ADDR=0x920000
$ make verdin-imx8mm_defconfig
$ make flash.bin

Flash to eMMC

> tftpboot ${loadaddr} flash.bin
> setexpr blkcnt ${filesize} + 0x1ff && setexpr blkcnt ${blkcnt} / 0x200
> mmc dev 0 1 && mmc write ${loadaddr} 0x2 ${blkcnt}

As a convenience, instead of the last two commands one may also use the update
U-Boot wrapper:

> run update_uboot

Boot

ATF, U-Boot proper and u-boot.dtb images are packed into FIT image,
which is loaded and parsed by SPL.

Boot sequence is:

	SPL —> ATF (TF-A) —> U-Boot proper

Output:

U-Boot SPL 2020.01-00187-gd411d164e5 (Jan 26 2020 - 04:47:26 +0100)
Normal Boot
Trying to boot from MMC1

U-Boot 2020.01-00187-gd411d164e5 (Jan 26 2020 - 04:47:26 +0100)

CPU: Freescale i.MX8MMQ rev1.0 at 0 MHz
Reset cause: POR
DRAM: 2 GiB
MMC: FSL_SDHC: 0, FSL_SDHC: 1, FSL_SDHC: 2
Loading Environment from MMC... OK
In: serial
Out: serial
Err: serial
Model: Toradex Verdin iMX8M Mini Quad 2GB Wi-Fi / BT IT V1.0A, Serial:
Net: eth0: ethernet@30be0000
Hit any key to stop autoboot: 0
Verdin iMX8MM #

Xilinx

	U-Boot device tree bindings

	ZYNQ
	About this

	Zynq boards

	Building

	Bootmode

	Mainline status

	TODO

U-Boot device tree bindings

All the device tree bindings used in U-Boot are specified in Linux
kernel. Please refer dt bindings from below specified paths in Linux
kernel.

	
	ata

	
	Documentation/devicetree/bindings/ata/ahci-ceva.txt

	
	gpio

	
	Documentation/devicetree/bindings/gpio/gpio-xilinx.txt

	Documentation/devicetree/bindings/gpio/gpio-zynq.txt

	
	i2c

	
	Documentation/devicetree/bindings/i2c/i2c-xiic.txt

	Documentation/devicetree/bindings/i2c/i2c-cadence.txt

	
	mmc

	
	Documentation/devicetree/bindings/mmc/arasan,sdhci.txt

	
	net

	
	Documentation/devicetree/bindings/net/macb.txt

	Documentation/devicetree/bindings/net/xilinx_axienet.txt

	Documentation/devicetree/bindings/net/xilinx_emaclite.txt

	
	serial

	
	Documentation/devicetree/bindings/serial/cdns,uart.txt

	Documentation/devicetree/bindings/serial/xlnx,opb-uartlite.txt

	
	spi

	
	Documentation/devicetree/bindings/spi/spi-cadence.txt

	Documentation/devicetree/bindings/spi/spi-xilinx.txt

	Documentation/devicetree/bindings/spi/spi-zynqmp-qspi.txt

	Documentation/devicetree/bindings/spi/spi-zynq-qspi.txt

	
	usb

	
	Documentation/devicetree/bindings/usb/dwc3-xilinx.txt

	Documentation/devicetree/bindings/usb/dwc3.txt

	Documentation/devicetree/bindings/usb/ci-hdrc-usb2.txt

	
	wdt

	
	Documentation/devicetree/bindings/watchdog/of-xilinx-wdt.txt

ZYNQ

About this

This document describes the information about Xilinx Zynq U-Boot -
like supported boards, ML status and TODO list.

Zynq boards

Xilinx Zynq-7000 All Programmable SoCs enable extensive system level
differentiation, integration, and flexibility through hardware, software,
and I/O programmability.

	zc702 (single qspi, gem0, mmc) [1]

	zc706 (dual parallel qspi, gem0, mmc) [2]

	zed (single qspi, gem0, mmc) [3]

	microzed (single qspi, gem0, mmc) [4]

	
	zc770

	
	zc770-xm010 (single qspi, gem0, mmc)

	zc770-xm011 (8 or 16 bit nand)

	zc770-xm012 (nor)

	zc770-xm013 (dual parallel qspi, gem1)

Building

configure and build for zc702 board:

$ make zynq_zc702_config
$ make

Bootmode

Zynq has a facility to read the bootmode from the slcr bootmode register
once user is setting through jumpers on the board - see page no:1546 on [5]

All possible bootmode values are defined in Table 6-2:Boot_Mode MIO Pins
on [5].

board_late_init() will read the bootmode values using slcr bootmode register
at runtime and assign the modeboot variable to specific bootmode string which
is intern used in autoboot.

SLCR bootmode register Bit[3:0] values

#define ZYNQ_BM_NOR 0x02
#define ZYNQ_BM_SD 0x05
#define ZYNQ_BM_JTAG 0x0

“modeboot” variable can assign any of “norboot”, “sdboot” or “jtagboot”
bootmode strings at runtime.

Mainline status

	Added basic board configurations support.

	Added zynq u-boot bsp code - arch/arm/cpu/armv7/zynq

	Added zynq boards named - zc70x, zed, microzed, zc770_xm010/xm011/xm012/xm013

	Added zynq drivers:

	serial

	drivers/serial/serial_zynq.c

	net

	drivers/net/zynq_gem.c

	mmc

	drivers/mmc/zynq_sdhci.c

	spi

	drivers/spi/zynq_spi.c

	qspi

	drivers/spi/zynq_qspi.c

	i2c

	drivers/i2c/zynq_i2c.c

	nand

	drivers/mtd/nand/raw/zynq_nand.c

	Done proper cleanups on board configurations

	Added basic FDT support for zynq boards

	d-cache support for zynq_gem.c

TODO

Add FDT support on individual drivers

	[1] http://www.xilinx.com/products/boards-and-kits/EK-Z7-ZC702-G.htm

	[2] http://www.xilinx.com/products/boards-and-kits/EK-Z7-ZC706-G.htm

	[3] http://zedboard.org/product/zedboard

	[4] http://zedboard.org/product/microzed

	[5] http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

Android-specific doc

	Android A/B updates
	Overview

	A/B enablement

	Command usage

	References

	Android Verified Boot 2.0
	Overview

	AVB 2.0 U-Boot shell commands

	Partitions tampering (example)

	Enable on your board

	References

	Android Bootloader Control Block (BCB)
	Overview

	‘bcb’. Shell command overview

	‘bcb’. Example of getting reboot reason

	Enable on your board

	Android Boot Image
	Overview

	Booting

	DTB and DTBO blobs

	C API for working with Android Boot Image format

	References

	FastBoot Version 0.4
	Basic Requirements

	Transport and Framing

	Example Session

	Command Reference

	Client Variables

	Android Fastboot
	Overview

	Client installation

	Board specific

	Fastboot environment variables

	Partition Names

	Writing Partition Table

	In Action

	References

Android A/B updates

Overview

A/B system updates ensures modern approach for system update. This feature
allows one to use two sets (or more) of partitions referred to as slots
(normally slot A and slot B). The system runs from the current slot while the
partitions in the unused slot can be updated 1.

A/B enablement

The A/B updates support can be activated by specifying next options in
your board configuration file:

CONFIG_ANDROID_AB=y
CONFIG_CMD_AB_SELECT=y

The disk space on target device must be partitioned in a way so that each
partition which needs to be updated has two or more instances. The name of
each instance must be formed by adding suffixes: _a, _b, _c, etc.
For example: boot_a, boot_b, system_a, system_b, vendor_a,
vendor_b.

As a result you can use ab_select command to ensure A/B boot process in your
boot script. This command analyzes and processes A/B metadata stored on a
special partition (e.g. misc) and determines which slot should be used for
booting up.

Command usage

ab_select <slot_var_name> <interface> <dev[:part_number|#part_name]>

for example:

=> ab_select slot_name mmc 1:4

or:

=> ab_select slot_name mmc 1#misc

Result:

=> printenv slot_name
slot_name=a

Based on this slot information, the current boot partition should be defined,
and next kernel command line parameters should be generated:

	androidboot.slot_suffix=

	root=

For example:

androidboot.slot_suffix=_a root=/dev/mmcblk1p12

A/B metadata is organized according to AOSP reference 2. On the first system
start with A/B enabled, when misc partition doesn’t contain required data,
the default A/B metadata will be created and written to misc partition.

References

	1

	https://source.android.com/devices/tech/ota/ab

	2

	https://android.googlesource.com/platform/bootable/recovery/+/refs/tags/android-10.0.0_r25/bootloader_message/include/bootloader_message/bootloader_message.h

Android Verified Boot 2.0

This file contains information about the current support of Android Verified
Boot 2.0 in U-Boot.

Overview

Verified Boot establishes a chain of trust from the bootloader to system images:

	Provides integrity checking for:

	Android Boot image: Linux kernel + ramdisk. RAW hashing of the whole
partition is done and the hash is compared with the one stored in
the VBMeta image

	system/vendor partitions: verifying root hash of dm-verity hashtrees

	Provides capabilities for rollback protection

Integrity of the bootloader (U-Boot BLOB and environment) is out of scope.

For additional details check 1.

AVB using OP-TEE (optional)

If AVB is configured to use OP-TEE (see Enable on your board) rollback
indexes and device lock state are stored in RPMB. The RPMB partition is managed
by OP-TEE (see 2 for details) which is a secure OS leveraging ARM
TrustZone.

AVB 2.0 U-Boot shell commands

Provides CLI interface to invoke AVB 2.0 verification + misc. commands for
different testing purposes:

avb init <dev> - initialize avb 2.0 for <dev>
avb verify - run verification process using hash data from vbmeta structure
avb read_rb <num> - read rollback index at location <num>
avb write_rb <num> <rb> - write rollback index <rb> to <num>
avb is_unlocked - returns unlock status of the device
avb get_uuid <partname> - read and print uuid of partition <partname>
avb read_part <partname> <offset> <num> <addr> - read <num> bytes from
partition <partname> to buffer <addr>
avb write_part <partname> <offset> <num> <addr> - write <num> bytes to
<partname> by <offset> using data from <addr>

Partitions tampering (example)

Boot or system/vendor (dm-verity metadata section) is tampered:

=> avb init 1
=> avb verify
avb_slot_verify.c:175: ERROR: boot: Hash of data does not match digest in
descriptor.
Slot verification result: ERROR_IO

Vbmeta partition is tampered:

=> avb init 1
=> avb verify
avb_vbmeta_image.c:206: ERROR: Hash does not match!
avb_slot_verify.c:388: ERROR: vbmeta: Error verifying vbmeta image:
HASH_MISMATCH
Slot verification result: ERROR_IO

Enable on your board

The following options must be enabled:

CONFIG_LIBAVB=y
CONFIG_AVB_VERIFY=y
CONFIG_CMD_AVB=y

In addtion optionally if storing rollback indexes in RPMB with help of
OP-TEE:

CONFIG_TEE=y
CONFIG_OPTEE=y
CONFIG_OPTEE_TA_AVB=y
CONFIG_SUPPORT_EMMC_RPMB=y

Then add avb verify invocation to your android boot sequence of commands,
e.g.:

=> avb_verify=avb init $mmcdev; avb verify;
=> if run avb_verify; then \
 echo AVB verification OK. Continue boot; \
 set bootargs $bootargs $avb_bootargs; \
 else \
 echo AVB verification failed; \
 exit; \
 fi; \

=> emmc_android_boot= \
 echo Trying to boot Android from eMMC ...; \
 ... \
 run avb_verify; \
 mmc read ${fdtaddr} ${fdt_start} ${fdt_size}; \
 mmc read ${loadaddr} ${boot_start} ${boot_size}; \
 bootm $loadaddr $loadaddr $fdtaddr; \

If partitions you want to verify are slotted (have A/B suffixes), then current
slot suffix should be passed to avb verify sub-command, e.g.:

=> avb verify _a

To switch on automatic generation of vbmeta partition in AOSP build, add these
lines to device configuration mk file:

BOARD_AVB_ENABLE := true
BOARD_AVB_ALGORITHM := SHA512_RSA4096
BOARD_BOOTIMAGE_PARTITION_SIZE := <boot partition size>

After flashing U-Boot don’t forget to update environment and write new
partition table:

=> env default -f -a
=> setenv partitions $partitions_android
=> env save
=> gpt write mmc 1 $partitions_android

References

	1

	https://android.googlesource.com/platform/external/avb/+/master/README.md

	2

	https://www.op-tee.org/

Android Bootloader Control Block (BCB)

The purpose behind this file is to:

	give an overview of BCB w/o duplicating public documentation

	describe the main BCB use-cases which concern U-Boot

	reflect current support status in U-Boot

	mention any relevant U-Boot build-time tunables

	precisely exemplify one or more use-cases

Additions and fixes are welcome!

Overview

Bootloader Control Block (BCB) is a well established term/acronym in
the Android namespace which refers to a location in a dedicated raw
(i.e. FS-unaware) flash (e.g. eMMC) partition, usually called misc,
which is used as media for exchanging messages between Android userspace
(particularly recovery 1) and an Android-capable bootloader.

On higher level, BCB provides a way to implement a subset of Android
Bootloader Requirements 2, amongst which are:

	Android-specific bootloader flow 3

	Get the “reboot reason” (and act accordingly) 4

	Get/pass a list of commands from/to recovery 1

	TODO

‘bcb’. Shell command overview

The bcb command provides a CLI to facilitate the development of the
requirements enumerated above. Below is the command’s help message:

=> bcb
bcb - Load/set/clear/test/dump/store Android BCB fields

Usage:
bcb load <dev> <part> - load BCB from mmc <dev>:<part>
bcb set <field> <val> - set BCB <field> to <val>
bcb clear [<field>] - clear BCB <field> or all fields
bcb test <field> <op> <val> - test BCB <field> against <val>
bcb dump <field> - dump BCB <field>
bcb store - store BCB back to mmc

Legend:
<dev> - MMC device index containing the BCB partition
<part> - MMC partition index or name containing the BCB
<field> - one of {command,status,recovery,stage,reserved}
<op> - the binary operator used in 'bcb test':
 '=' returns true if <val> matches the string stored in <field>
 '~' returns true if <val> matches a subset of <field>'s string
<val> - string/text provided as input to bcb {set,test}
 NOTE: any ':' character in <val> will be replaced by line feed
 during 'bcb set' and used as separator by upper layers

‘bcb’. Example of getting reboot reason

if bcb load 1 misc; then
 # valid BCB found
 if bcb test command = bootonce-bootloader; then
 bcb clear command; bcb store;
 # do the equivalent of AOSP ${fastbootcmd}
 # i.e. call fastboot
 else if bcb test command = boot-recovery; then
 bcb clear command; bcb store;
 # do the equivalent of AOSP ${recoverycmd}
 # i.e. do anything required for booting into recovery
 else
 # boot Android OS normally
 fi
else
 # corrupted/non-existent BCB
 # report error or boot non-Android OS (platform-specific)
fi

Enable on your board

The following Kconfig options must be enabled:

CONFIG_PARTITIONS=y
CONFIG_MMC=y
CONFIG_BCB=y

	1(1,2)

	https://android.googlesource.com/platform/bootable/recovery

	2

	https://source.android.com/devices/bootloader

	3

	https://patchwork.ozlabs.org/patch/746835/
(“[U-Boot,5/6] Initial support for the Android Bootloader flow”)

	4

	https://source.android.com/devices/bootloader/boot-reason

Android Boot Image

Overview

Android Boot Image is used to boot Android OS. It usually contains kernel image
(like zImage file) and ramdisk. Sometimes it can contain additional
binaries. This image is built as a part of AOSP (called boot.img), and being
flashed into boot partition on eMMC. Bootloader then reads that image from
boot partition to RAM and boots the kernel from it. Kernel than starts
init process from the ramdisk. It should be mentioned that recovery image
(recovery.img) also has Android Boot Image format.

Android Boot Image format is described at 1. At the moment it can have one of
next image headers:

	v0: it’s called legacy boot image header; used in devices launched before
Android 9; contains kernel image, ramdisk and second stage bootloader
(usually unused)

	v1: used in devices launched with Android 9; adds recovery_dtbo field,
which should be used for non-A/B devices in recovery.img (see 2 for
details)

	v2: used in devices launched with Android 10; adds dtb field, which
references payload containing DTB blobs (either concatenated one after the
other, or in Android DTBO image format)

v2, v1 and v0 formats are backward compatible.

Android Boot Image format is represented by struct andr_img_hdr in
U-Boot, and can be seen in include/android_image.h. U-Boot supports booting
Android Boot Image and also has associated command

Booting

U-Boot is able to boot the Android OS from Android Boot Image using bootm
command. In order to use Android Boot Image format support, next option should
be enabled:

CONFIG_ANDROID_BOOT_IMAGE=y

Then one can use next bootm command call to run Android:

=> bootm $loadaddr $loadaddr $fdtaddr

where $loadaddr - address in RAM where boot image was loaded; $fdtaddr -
address in RAM where DTB blob was loaded.

And parameters are, correspondingly:

	Where kernel image is located in RAM

	Where ramdisk is located in RAM (can be "-" if not applicable)

	Where DTB blob is located in RAM

bootm command will figure out that image located in $loadaddr has
Android Boot Image format, will parse that and boot the kernel from it,
providing DTB blob to kernel (from 3rd parameter), passing info about ramdisk to
kernel via DTB.

DTB and DTBO blobs

bootm command can’t just use DTB blob from Android Boot Image (dtb
field), because:

	there is no DTB area in Android Boot Image before v2

	there may be several DTB blobs in DTB area (e.g. for different SoCs)

	some DTBO blobs may have to be merged in DTB blobs before booting
(e.g. for different boards)

So user has to prepare DTB blob manually and provide it in a 3rd parameter
of bootm command. Next commands can be used to do so:

	abootimg: manipulates Anroid Boot Image, allows one to extract
meta-information and payloads from it

	adtimg: manipulates Android DTB/DTBO image 3, allows one to extract
DTB/DTBO blobs from it

In order to use those, please enable next config options:

CONFIG_CMD_ABOOTIMG=y
CONFIG_CMD_ADTIMG=y

For example, let’s assume we have next Android partitions on eMMC:

	boot: contains Android Boot Image v2 (including DTB blobs)

	dtbo: contains DTBO blobs

Then next command sequence can be used to boot Android:

=> mmc dev 1

 # Read boot image to RAM (into $loadaddr)
=> part start mmc 1 boot boot_start
=> part size mmc 1 boot boot_size
=> mmc read $loadaddr $boot_start $boot_size

 # Read DTBO image to RAM (into $dtboaddr)
=> part start mmc 1 dtbo dtbo_start
=> part size mmc 1 dtbo dtbo_size
=> mmc read $dtboaddr $dtbo_start $dtbo_size

 # Copy required DTB blob (into $fdtaddr)
=> abootimg get dtb --index=0 dtb0_start dtb0_size
=> cp.b $dtb0_start $fdtaddr $dtb0_size

 # Merge required DTBO blobs into DTB blob
=> fdt addr $fdtaddr 0x100000
=> adtimg addr $dtboaddr
=> adtimg get dt --index=0 $dtbo0_addr
=> fdt apply $dtbo0_addr

 # Boot Android
=> bootm $loadaddr $loadaddr $fdtaddr

This sequence should be used for Android 10 boot. Of course, the whole Android
boot procedure includes much more actions, like:

	obtaining reboot reason from BCB (see 4)

	implementing recovery boot

	implementing fastboot boot

	implementing A/B slotting (see 5)

	implementing AVB2.0 (see 6)

But Android Boot Image booting is the most crucial part in Android boot scheme.

All Android bootloader requirements documentation is available at 7. Some
overview on the whole Android 10 boot process can be found at 8.

C API for working with Android Boot Image format

	
int android_image_get_kernel(const struct andr_img_hdr * hdr, int verify, ulong * os_data, ulong * os_len)

	processes kernel part of Android boot images

Parameters

	const struct andr_img_hdr * hdr

	Pointer to image header, which is at the start
of the image.

	int verify

	Checksum verification flag. Currently unimplemented.

	ulong * os_data

	Pointer to a ulong variable, will hold os data start
address.

	ulong * os_len

	Pointer to a ulong variable, will hold os data length.

Description

This function returns the os image’s start address and length. Also,
it appends the kernel command line to the bootargs env variable.

Return

	Zero, os start address and length on success,

	otherwise on failure.

	
bool android_image_get_dtbo(ulong hdr_addr, ulong * addr, u32 * size)

	Get address and size of recovery DTBO image.

Parameters

	ulong hdr_addr

	Boot image header address

	ulong * addr

	If not NULL, will contain address of recovery DTBO image

	u32 * size

	If not NULL, will contain size of recovery DTBO image

Description

Get the address and size of DTBO image in “Recovery DTBO” area of Android
Boot Image in RAM. The format of this image is Android DTBO (see
corresponding “DTB/DTBO Partitions” AOSP documentation for details). Once
the address is obtained from this function, one can use ‘adtimg’ U-Boot
command or android_dt_*() functions to extract desired DTBO blob.

This DTBO (included in boot image) is only needed for non-A/B devices, and it
only can be found in recovery image. On A/B devices we can always rely on
“dtbo” partition. See “Including DTBO in Recovery for Non-A/B Devices” in
AOSP documentation for details.

Return

true on success or false on error.

	
bool android_image_get_dtb_img_addr(ulong hdr_addr, ulong * addr)

	Get the address of DTB area in boot image.

Parameters

	ulong hdr_addr

	Boot image header address

	ulong * addr

	Will contain the address of DTB area in boot image

Return

true on success or false on fail.

	
bool android_image_get_dtb_by_index(ulong hdr_addr, u32 index, ulong * addr, u32 * size)

	Get address and size of blob in DTB area.

Parameters

	ulong hdr_addr

	Boot image header address

	u32 index

	Index of desired DTB in DTB area (starting from 0)

	ulong * addr

	If not NULL, will contain address to specified DTB

	u32 * size

	If not NULL, will contain size of specified DTB

Description

Get the address and size of DTB blob by its index in DTB area of Android
Boot Image in RAM.

Return

true on success or false on error.

	
void android_print_contents(const struct andr_img_hdr * hdr)

	prints out the contents of the Android format image

Parameters

	const struct andr_img_hdr * hdr

	pointer to the Android format image header

Description

android_print_contents() formats a multi line Android image contents
description.
The routine prints out Android image properties

Return

no returned results

	
bool android_image_print_dtb_info(const struct fdt_header * fdt, u32 index)

	Print info for one DTB blob in DTB area.

Parameters

	const struct fdt_header * fdt

	DTB header

	u32 index

	Number of DTB blob in DTB area.

Return

true on success or false on error.

	
bool android_image_print_dtb_contents(ulong hdr_addr)

	Print info for DTB blobs in DTB area.

Parameters

	ulong hdr_addr

	Boot image header address

Description

	DTB payload in Android Boot Image v2+ can be in one of following formats:

	
	Concatenated DTB blobs

	Android DTBO format (see CONFIG_CMD_ADTIMG for details)

	This function does next:

	
	Prints out the format used in DTB area

	Iterates over all DTB blobs in DTB area and prints out the info for
each blob.

Return

true on success or false on error.

References

	1

	https://source.android.com/devices/bootloader/boot-image-header

	2

	https://source.android.com/devices/bootloader/recovery-image

	3

	https://source.android.com/devices/architecture/dto/partitions

	4

	Android Bootloader Control Block (BCB)

	5

	Android A/B updates

	6

	Android Verified Boot 2.0

	7

	https://source.android.com/devices/bootloader

	8

	https://connect.linaro.org/resources/san19/san19-217/

FastBoot Version 0.4

The fastboot protocol is a mechanism for communicating with bootloaders
over USB. It is designed to be very straightforward to implement, to
allow it to be used across a wide range of devices and from hosts running
Linux, Windows, or OSX.

Basic Requirements

	Two bulk endpoints (in, out) are required

	Max packet size must be 64 bytes for full-speed and 512 bytes for
high-speed USB

	The protocol is entirely host-driven and synchronous (unlike the
multi-channel, bi-directional, asynchronous ADB protocol)

Transport and Framing

	Host sends a command, which is an ascii string in a single
packet no greater than 64 bytes.

	Client response with a single packet no greater than 64 bytes.
The first four bytes of the response are “OKAY”, “FAIL”, “DATA”,
or “INFO”. Additional bytes may contain an (ascii) informative
message.

	INFO -> the remaining 60 bytes are an informative message
(providing progress or diagnostic messages). They should
be displayed and then step #2 repeats

	FAIL -> the requested command failed. The remaining 60 bytes
of the response (if present) provide a textual failure message
to present to the user. Stop.

	OKAY -> the requested command completed successfully. Go to #5

	DATA -> the requested command is ready for the data phase.
A DATA response packet will be 12 bytes long, in the form of
DATA00000000 where the 8 digit hexidecimal number represents
the total data size to transfer.

	Data phase. Depending on the command, the host or client will
send the indicated amount of data. Short packets are always
acceptable and zero-length packets are ignored. This phase continues
until the client has sent or received the number of bytes indicated
in the “DATA” response above.

	Client responds with a single packet no greater than 64 bytes.
The first four bytes of the response are “OKAY”, “FAIL”, or “INFO”.
Similar to #2:

	INFO -> display the remaining 60 bytes and return to #4

	FAIL -> display the remaining 60 bytes (if present) as a failure
reason and consider the command failed. Stop.

	OKAY -> success. Go to #5

	Success. Stop.

Example Session

Host: "getvar:version" request version variable

Client: "OKAY0.4" return version "0.4"

Host: "getvar:nonexistant" request some undefined variable

Client: "OKAY" return value ""

Host: "download:00001234" request to send 0x1234 bytes of data

Client: "DATA00001234" ready to accept data

Host: < 0x1234 bytes > send data

Client: "OKAY" success

Host: "flash:bootloader" request to flash the data to the bootloader

Client: "INFOerasing flash" indicate status / progress
 "INFOwriting flash"
 "OKAY" indicate success

Host: "powerdown" send a command

Client: "FAILunknown command" indicate failure

Command Reference

	Command parameters are indicated by printf-style escape sequences.

	Commands are ascii strings and sent without the quotes (which are
for illustration only here) and without a trailing 0 byte.

	Commands that begin with a lowercase letter are reserved for this
specification. OEM-specific commands should not begin with a
lowercase letter, to prevent incompatibilities with future specs.

"getvar:%s" Read a config/version variable from the bootloader.
 The variable contents will be returned after the
 OKAY response.

"download:%08x" Write data to memory which will be later used
 by "boot", "ramdisk", "flash", etc. The client
 will reply with "DATA%08x" if it has enough
 space in RAM or "FAIL" if not. The size of
 the download is remembered.

 "verify:%08x" Send a digital signature to verify the downloaded
 data. Required if the bootloader is "secure"
 otherwise "flash" and "boot" will be ignored.

 "flash:%s" Write the previously downloaded image to the
 named partition (if possible).

 "erase:%s" Erase the indicated partition (clear to 0xFFs)

 "boot" The previously downloaded data is a boot.img
 and should be booted according to the normal
 procedure for a boot.img

 "continue" Continue booting as normal (if possible)

 "reboot" Reboot the device.

 "reboot-bootloader" Reboot back into the bootloader.
 Useful for upgrade processes that require upgrading
 the bootloader and then upgrading other partitions
 using the new bootloader.

 "powerdown" Power off the device.

Client Variables

The getvar:%s command is used to read client variables which
represent various information about the device and the software
on it.

The various currently defined names are:

version Version of FastBoot protocol supported.
 It should be "0.3" for this document.

version-bootloader Version string for the Bootloader.

version-baseband Version string of the Baseband Software

product Name of the product

serialno Product serial number

secure If the value is "yes", this is a secure
 bootloader requiring a signature before
 it will install or boot images.

Names starting with a lowercase character are reserved by this
specification. OEM-specific names should not start with lowercase
characters.

Android Fastboot

Overview

The protocol that is used over USB and UDP is described in 1.

The current implementation supports the following standard commands:

	boot

	continue

	download

	erase (if enabled)

	flash (if enabled)

	getvar

	reboot

	reboot-bootloader

	set_active (only a stub implementation which always succeeds)

The following OEM commands are supported (if enabled):

	oem format - this executes gpt write mmc %x $partitions

Support for both eMMC and NAND devices is included.

Client installation

The counterpart to this is the fastboot client which can be found in
Android’s platform/system/core repository in the fastboot
folder. It runs on Windows, Linux and OSX. The fastboot client is
part of the Android SDK Platform-Tools and can be downloaded from 2.

Board specific

USB configuration

The fastboot gadget relies on the USB download gadget, so the following
options must be configured:

CONFIG_USB_GADGET_DOWNLOAD
CONFIG_USB_GADGET_VENDOR_NUM
CONFIG_USB_GADGET_PRODUCT_NUM
CONFIG_USB_GADGET_MANUFACTURER

NOTE: The CONFIG_USB_GADGET_VENDOR_NUM must be one of the numbers
supported by the fastboot client. The list of vendor IDs supported can
be found in the fastboot client source code.

General configuration

The fastboot protocol requires a large memory buffer for
downloads. This buffer should be as large as possible for a
platform. The location of the buffer and size are set with
CONFIG_FASTBOOT_BUF_ADDR and CONFIG_FASTBOOT_BUF_SIZE. These
may be overridden on the fastboot command line using -l and
-s.

Fastboot environment variables

Partition aliases

Fastboot partition aliases can also be defined for devices where GPT
limitations prevent user-friendly partition names such as boot, system
and cache. Or, where the actual partition name doesn’t match a standard
partition name used commonly with fastboot.

The current implementation checks aliases when accessing partitions by
name (flash_write and erase functions). To define a partition alias
add an environment variable similar to:

fastboot_partition_alias_<alias partition name>=<actual partition name>

for example:

fastboot_partition_alias_boot=LNX

Variable overrides

Variables retrived through getvar can be overridden by defining
environment variables of the form fastboot.<variable>. These are
looked up first so can be used to override values which would
otherwise be returned. Using this mechanism you can also return types
for NAND filesystems, as the fully parameterised variable is looked
up, e.g.:

fastboot.partition-type:boot=jffs2

Boot command

When executing the fastboot boot command, if fastboot_bootcmd is set
then that will be executed in place of bootm <CONFIG_FASTBOOT_BUF_ADDR>.

Partition Names

The Fastboot implementation in U-Boot allows to write images into disk
partitions. Target partitions are referred on the host computer by
their names.

For GPT/EFI the respective partition name is used.

For MBR the partitions are referred by generic names according to the
following schema:

<device type><device index letter><partition index>

Example: hda3, sdb1, usbda1.

The device type is as follows:

	IDE, ATAPI and SATA disks: hd

	SCSI disks: sd

	USB media: usbd

	MMC and SD cards: mmcsd

	Disk on chip: docd

	other: xx

The device index starts from a and refers to the interface (e.g. USB
controller, SD/MMC controller) or disk index. The partition index starts
from 1 and describes the partition number on the particular device.

Writing Partition Table

Fastboot also allows to write the partition table to the media. This can be
done by writing the respective partition table image to a special target
“gpt” or “mbr”. These names can be customized by defining the following
configuration options:

CONFIG_FASTBOOT_GPT_NAME
CONFIG_FASTBOOT_MBR_NAME

In Action

Enter into fastboot by executing the fastboot command in U-Boot for either USB:

=> fastboot usb 0

or UDP:

=> fastboot udp
link up on port 0, speed 100, full duplex
Using ethernet@4a100000 device
Listening for fastboot command on 192.168.0.102

On the client side you can fetch the bootloader version for instance:

$ fastboot getvar version-bootloader
version-bootloader: U-Boot 2019.07-rc4-00240-g00c9f2a2ec
Finished. Total time: 0.005s

or initiate a reboot:

$ fastboot reboot

and once the client comes back, the board should reset.

You can also specify a kernel image to boot. You have to either specify
the an image in Android format or pass a binary kernel and let the
fastboot client wrap the Android suite around it. On OMAP for instance you
take zImage kernel and pass it to the fastboot client:

$ fastboot -b 0x80000000 -c "console=ttyO2 earlyprintk root=/dev/ram0 mem=128M" boot zImage
creating boot image...
creating boot image - 1847296 bytes
downloading 'boot.img'...
OKAY [2.766s]
booting...
OKAY [-0.000s]
finished. total time: 2.766s

and on the U-Boot side you should see:

Starting download of 1847296 bytes
..
downloading of 1847296 bytes finished
Booting kernel..
Booting Android Image at 0x81000000 ...
Kernel load addr 0x80008000 size 1801 KiB
Kernel command line: console=ttyO2 earlyprintk root=/dev/ram0 mem=128M
 Loading Kernel Image ... OK
OK

Starting kernel ...

References

	1

	FastBoot Version 0.4

	2

	https://developer.android.com/studio/releases/platform-tools

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | O
 | P
 | Q
 | R
 | S
 | T
 | U

A

 	
 	analyze_modifiers (C function)

 	android_image_get_dtb_by_index (C function)

 	android_image_get_dtb_img_addr (C function)

 	android_image_get_dtbo (C function)

 	
 	android_image_get_kernel (C function)

 	android_image_print_dtb_contents (C function)

 	android_image_print_dtb_info (C function)

 	android_print_contents (C function)

B

 	
 	bootefi_run_finish (C function)

 	
 	bootefi_test_prepare (C function)

C

 	
 	check_node_type (C function)

 	
 	checksum (C function)

 	copy_fdt (C function)

D

 	
 	default_serial_puts (C function)

 	disconnect_child (C function)

 	do_bootefi (C function)

 	do_bootefi_exec (C function)

 	do_bootefi_image (C function)

 	do_efi_boot_add (C function)

 	do_efi_boot_dump (C function)

 	do_efi_boot_next (C function)

 	do_efi_boot_opt (C function)

 	do_efi_boot_order (C function)

 	
 	do_efi_boot_rm (C function)

 	do_efi_selftest (C function)

 	do_efi_show_devices (C function)

 	do_efi_show_drivers (C function)

 	do_efi_show_handles (C function)

 	do_efi_show_images (C function)

 	do_efi_show_memmap (C function)

 	do_efi_show_tables (C function)

 	do_efibootmgr (C function)

 	do_efidebug (C function)

E

 	
 	efi_add_conventional_memory_map (C function)

 	efi_add_driver (C function)

 	efi_add_handle (C function)

 	efi_add_memory_map (C function)

 	efi_add_protocol (C function)

 	efi_add_runtime_mmio (C function)

 	efi_allocate_pages_ext (C function)

 	efi_allocate_pool (C function)

 	efi_allocate_pool_ext (C function)

 	efi_bind_controller (C function)

 	efi_bl_bind (C function)

 	efi_bl_bind_partitions (C function)

 	efi_bl_read (C function)

 	efi_bl_write (C function)

 	efi_bootmgr_load (C function)

 	efi_calculate_crc32 (C function)

 	efi_carve_out_dt_rsv (C function)

 	efi_check_allocated (C function)

 	efi_check_event (C function)

 	efi_check_register_notify_event (C function)

 	efi_cin_check (C function)

 	efi_cin_empty_buffer (C function)

 	efi_cin_notify (C function)

 	efi_cin_notify_function (C type)

 	efi_cin_read_key (C function)

 	efi_cin_read_key_stroke (C function)

 	efi_cin_read_key_stroke_ex (C function)

 	efi_cin_register_key_notify (C function)

 	efi_cin_reset (C function)

 	efi_cin_reset_ex (C function)

 	efi_cin_set_state (C function)

 	efi_cin_unregister_key_notify (C function)

 	efi_close_event (C function)

 	efi_close_protocol (C function)

 	efi_connect_controller (C function)

 	efi_connect_single_controller (C function)

 	efi_console_register (C function)

 	efi_convert_pointer (C function)

 	efi_convert_pointer_runtime (C function)

 	efi_copy_mem (C function)

 	efi_cout_clear_screen (C function)

 	efi_create_event (C function)

 	efi_create_event_ext (C function)

 	efi_create_file (C function)

 	efi_create_handle (C function)

 	efi_create_open_info (C function)

 	efi_delete_handle (C function)

 	efi_delete_image (C function)

 	efi_delete_open_info (C function)

 	efi_deserialize_load_option (C function)

 	efi_disconnect_all_drivers (C function)

 	efi_disconnect_controller (C function)

 	efi_disk_create_partitions (C function)

 	efi_disk_obj (C type)

 	efi_disk_register (C function)

 	efi_disk_reset (C function)

 	efi_driver_init (C function)

 	efi_event_is_queued (C function)

 	efi_exit (C function)

 	efi_exit_boot_services (C function)

 	efi_exit_caches (C function)

 	efi_file_from_path (C function)

 	efi_file_getpos (C function)

 	efi_file_setpos (C function)

 	efi_file_write (C function)

 	efi_free_pages (C function)

 	efi_free_pages_ext (C function)

 	efi_free_pool (C function)

 	efi_free_pool_ext (C function)

 	efi_fs_exists (C function)

 	efi_fs_from_path (C function)

 	efi_get_child_controllers (C function)

 	efi_get_device_handle_info (C function)

 	efi_get_driver_handle_info (C function)

 	efi_get_drivers (C function)

 	efi_get_file_size (C function)

 	efi_get_memory_map_ext (C function)

 	efi_get_next_monotonic_count (C function)

 	efi_get_next_variable_name (C function)

 	efi_get_next_variable_name_runtime (C function)

 	efi_get_time (C function)

 	efi_get_time_boottime (C function)

 	efi_get_variable (C function)

 	efi_get_variable_runtime (C function)

 	efi_gop_obj (C type)

 	efi_handle_protocol (C function)

 	efi_init_obj_list (C function)

 	efi_init_platform_lang (C function)

 	efi_init_runtime_supported (C function)

 	efi_init_variables (C function)

 	
 	efi_initialize_system_table (C function)

 	efi_initrd_register (C function)

 	efi_install_configuration_table (C function)

 	efi_install_configuration_table_ext (C function)

 	efi_install_fdt (C function)

 	efi_install_multiple_protocol_interfaces (C function)

 	efi_install_protocol_interface (C function)

 	efi_is_event (C function)

 	efi_is_runtime_service_pointer (C function)

 	efi_key_notify (C function)

 	efi_load_file2_initrd (C function)

 	efi_load_image (C function)

 	efi_load_image_from_path (C function)

 	efi_load_pe (C function)

 	efi_loader_relocate (C function)

 	efi_locate_device_path (C function)

 	efi_locate_handle (C function)

 	efi_locate_handle_buffer (C function)

 	efi_locate_handle_ext (C function)

 	efi_locate_protocol (C function)

 	efi_net_get_status (C function)

 	efi_net_nvdata (C function)

 	efi_net_obj (C type)

 	efi_net_push (C function)

 	efi_net_receive (C function)

 	efi_net_register (C function)

 	efi_net_set_dhcp_ack (C function)

 	efi_net_transmit (C function)

 	efi_network_timer_notify (C function)

 	efi_open_protocol (C function)

 	efi_open_protocol_information (C function)

 	efi_pool_allocation (C type)

 	efi_print_image_info (C function)

 	efi_print_image_infos (C function)

 	efi_process_event_queue (C function)

 	efi_protocol_open (C function)

 	efi_protocols_per_handle (C function)

 	efi_query_capsule_caps (C function)

 	efi_query_variable_info (C function)

 	efi_queue_event (C function)

 	efi_raise_tpl (C function)

 	efi_register_protocol_notify (C function)

 	efi_reinstall_protocol_interface (C function)

 	efi_remove_all_protocols (C function)

 	efi_remove_configuration_table (C function)

 	efi_remove_protocol (C function)

 	efi_reset_system (C function)

 	efi_reset_system_boottime (C function)

 	efi_reset_system_init (C function)

 	efi_restore_tpl (C function)

 	efi_run_image (C function)

 	efi_runtime_detach (C function)

 	efi_search (C function)

 	efi_search_obj (C function)

 	efi_search_protocol (C function)

 	efi_serialize_load_option (C function)

 	efi_set_bootdev (C function)

 	efi_set_code_and_data_type (C function)

 	efi_set_mem (C function)

 	efi_set_time (C function)

 	efi_set_time_boottime (C function)

 	efi_set_timer (C function)

 	efi_set_timer_ext (C function)

 	efi_set_variable (C function)

 	efi_set_variable_runtime (C function)

 	efi_set_virtual_address_map (C function)

 	efi_set_virtual_address_map_runtime (C function)

 	efi_set_watchdog_timer (C function)

 	efi_setup_loaded_image (C function)

 	efi_signal_event (C function)

 	efi_signal_event_ext (C function)

 	efi_stall (C function)

 	efi_start_image (C function)

 	efi_timer_check (C function)

 	efi_to_native (C function)

 	efi_uc_destroy (C function)

 	efi_uc_init (C function)

 	efi_uc_start (C function)

 	efi_uc_stop (C function)

 	efi_uc_supported (C function)

 	efi_unimplemented (C function)

 	efi_uninstall_multiple_protocol_interfaces (C function)

 	efi_uninstall_protocol (C function)

 	efi_uninstall_protocol_interface (C function)

 	efi_unload_image (C function)

 	efi_update_capsule (C function)

 	efi_update_exit_data (C function)

 	efi_update_table_header_crc32 (C function)

 	efi_validate_time (C function)

 	efi_variables_boot_exit_notify (C function)

 	efi_wait_for_event (C function)

F

 	
 	file_open (C function)

G

 	
 	get_config_table (C function)

 	get_current (C function)

 	get_file_size (C function)

 	
 	get_guid_text (C function)

 	get_var (C function)

 	getrng (C function)

 	gop_set_mode (C function)

I

 	
 	indent_string (C function)

 	
 	is_dir (C function)

 	is_valid_tpl (C function)

L

 	
 	ll_end (C function)

 	ll_entry_count (C function)

 	ll_entry_declare (C function)

 	ll_entry_declare_list (C function)

 	
 	ll_entry_end (C function)

 	ll_entry_get (C function)

 	ll_entry_start (C function)

 	ll_start (C function)

 	llsym (C function)

O

 	
 	on_baudrate (C function)

P

 	
 	parse_attr (C function)

 	parse_uboot_variable (C function)

 	
 	platform_get_rng_device (C function)

 	prefix (C function)

 	print_memory_attributes (C function)

Q

 	
 	query_console_serial (C function)

R

 	
 	rng_getinfo (C function)

S

 	
 	serial_assign (C function)

 	serial_getc (C function)

 	serial_init (C function)

 	serial_initfunc (C function)

 	serial_initialize (C function)

 	serial_null (C function)

 	serial_putc (C function)

 	serial_puts (C function)

 	serial_register (C function)

 	
 	serial_reinit_all (C function)

 	serial_setbrg (C function)

 	serial_stdio_init (C function)

 	serial_tstc (C function)

 	set_load_options (C function)

 	set_shift_mask (C function)

 	show_efi_boot_opt (C function)

 	show_efi_boot_opt_data (C function)

 	show_efi_boot_order (C function)

T

 	
 	try_load_entry (C function)

U

 	
 	uart_post_test (C function)

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 The U-Boot Documentation

 		
 Build U-Boot

 		
 Host tools

 		
 Building tools for Linux

 		
 Building tools for Windows

 		
 Unified Extensible Firmware (UEFI)

 		
 UEFI on U-Boot

 		
 Development target

 		
 Building U-Boot for UEFI

 		
 The UEFI life cycle

 		
 The UEFI object model

 		
 The UEFI events

 		
 The UEFI driver model

 		
 U-Boot devices mapped as UEFI devices

 		
 UEFI devices mapped as U-Boot devices

 		
 Miscellaneous

 		
 Links

 		
 U-Boot on EFI

 		
 Motivation

 		
 Status

 		
 Build Instructions

 		
 Trying it out

 		
 Inner workings

 		
 Future work

 		
 Where is the code?

 		
 iSCSI booting with U-Boot and iPXE

 		
 Motivation

 		
 Boot sequence

 		
 Security

 		
 Configuration

 		
 Links

 		
 Driver Model

 		
 Debugging driver model

 		
 Useful techniques in general

 		
 Failure to locate a device

 		
 Design Details

 		
 Terminology

 		
 How to try it

 		
 Running the tests

 		
 What is going on?

 		
 Declaring Drivers

 		
 Platform Data

 		
 Device Tree

 		
 Declaring Uclasses

 		
 Device Sequence Numbers

 		
 Bus Drivers

 		
 Driver Lifecycle

 		
 Data Structures

 		
 Changes since v1

 		
 Pre-Relocation Support

 		
 SPL Support

 		
 Enabling Driver Model

 		
 Things to punt for later

 		
 Ethernet Driver Guide

 		
 Driver framework

 		
 Driver methods

 		
 CONFIG_PHYLIB / CONFIG_CMD_MII

 		
 Legacy network drivers

 		
 Pre-relocation device tree manipulation

 		
 Purpose

 		
 Implementation

 		
 Example

 		
 Work to be done

 		
 File System Firmware Loader

 		
 Firmware Loader API core features

 		
 Firmware storage device described in device tree source

 		
 File system firmware Loader API

 		
 How to port an I2C driver to driver model

 		
 Live Device Tree

 		
 Introduction

 		
 Motivation

 		
 Implementation

 		
 Enabling livetree

 		
 Porting drivers

 		
 Useful ofnode functions

 		
 Phandles

 		
 Reading addresses

 		
 fdtdec

 		
 Modifying the livetree

 		
 Internal implementation

 		
 Errors

 		
 Adding new access functions

 		
 Future work

 		
 Migration Schedule

 		
 CONFIG_DM

 		
 CONFIG_DM_MMC

 		
 CONFIG_DM_USB

 		
 CONFIG_SATA

 		
 CONFIG_BLK

 		
 CONFIG_DM_SPI / CONFIG_DM_SPI_FLASH

 		
 CONFIG_DM_PCI

 		
 CONFIG_DM_VIDEO

 		
 CONFIG_DM_ETH

 		
 Compiled-in Device Tree / Platform Data

 		
 Introduction

 		
 Caveats

 		
 How it works

 		
 Converting of-platdata to a useful form

 		
 How to structure your driver

 		
 Internals

 		
 Credits

 		
 Future work

 		
 PCI with Driver Model

 		
 How busses are scanned

 		
 Sandbox

 		
 PMIC framework based on Driver Model

 		
 Introduction

 		
 How doees it work

 		
 Pmic uclass

 		
 Regulator uclass

 		
 Remote Processor Framework

 		
 Introduction

 		
 How does it work - The driver

 		
 Describing the device using platform data

 		
 Describing the device using device tree

 		
 How to port a serial driver to driver model

 		
 How to port a SPI driver to driver model

 		
 How long does this take?

 		
 Enable driver mode for SPI and SPI flash

 		
 Add the skeleton

 		
 Replace â��exynosâ�� in the above code with your driver name

 		
 #ifdef out all of the code in your driver except for the above

 		
 Add some includes

 		
 Build

 		
 Set up your platform data structure

 		
 Write ofdata_to_platdata() [for device tree only]

 		
 Add the platform data [non-device-tree only]

 		
 Add the device private data

 		
 Add the probe() and remove() methods

 		
 Implement set_speed()

 		
 Implement set_mode()

 		
 Implement claim_bus()

 		
 Implement release_bus()

 		
 Implement xfer()

 		
 Set up the per-child data and child pre-probe function

 		
 Optional: Set up cs_info() if you want it

 		
 Test it

 		
 Prepare patches and send them to the mailing lists

 		
 A little note about SPI uclass features

 		
 How USB works with driver model

 		
 Introduction

 		
 Enabling driver model for USB

 		
 Support for EHCI and XHCI

 		
 Data structures

 		
 USB buses

 		
 USB operations

 		
 USB Devices

 		
 Technical details on enumeration flow

 		
 Hubs

 		
 Example - Mass Storage

 		
 Counter-example: USB Ethernet

 		
 Sandbox

 		
 Future work

 		
 U-Boot API documentation

 		
 UEFI subsystem

 		
 Lauching UEFI images

 		
 Initialization of the UEFI sub-system

 		
 Boot services

 		
 Runtime services

 		
 UEFI drivers

 		
 Protocols

 		
 Linker-Generated Arrays

 		
 Serial system

 		
 Architecture-specific doc

 		
 ARC

 		
 ARM64

 		
 Summary

 		
 Notes

 		
 Contributors

 		
 M68K / ColdFire

 		
 History

 		
 Overview

 		
 Supported CPU families

 		
 Supported boards

 		
 Adopted toolchains

 		
 ColdFire specific configuration options/settings

 		
 MIPS

 		
 Toolchains

 		
 Known Issues

 		
 TODOs

 		
 NDS32

 		
 AndeStar ISA

 		
 AndesCore CPU

 		
 Nios II

 		
 Sandbox

 		
 Native Execution of U-Boot

 		
 Basic Operation

 		
 Console / LCD support

 		
 Command-line Options

 		
 Memory Emulation

 		
 Storing State

 		
 Running and Booting

 		
 Supported Drivers

 		
 Sandbox Variants

 		
 Linux RAW Networking Bridge

 		
 SPI Emulation

 		
 Block Device Emulation

 		
 Writing Sandbox Drivers

 		
 Debugging the init sequence

 		
 SDL_CONFIG

 		
 Using valgrind / memcheck

 		
 Testing

 		
 Memory Map

 		
 SuperH

 		
 Whatâ��s this?

 		
 Overview

 		
 Supported CPUs

 		
 Supported Boards

 		
 Compiler

 		
 Future

 		
 x86

 		
 Status

 		
 Build Instructions for U-Boot as BIOS replacement (bare mode)

 		
 CPU Microcode

 		
 SMP Support

 		
 Driver Model

 		
 Device Tree

 		
 Useful Commands

 		
 Booting Ubuntu

 		
 Test with SeaBIOS

 		
 Development Flow

 		
 Porting Hints

 		
 ACPI Support Status

 		
 EFI Support

 		
 TODO List

 		
 Xtensa

 		
 Xtensa Architecture and Diamond Cores

 		
 Adding support for an additional processor configuration

 		
 Global Data Pointer, Exported Function Stubs, and the ABI

 		
 Access to Invalid Memory Addresses

 		
 Board-specific doc

 		
 Andes Tech

 		
 ADP-AG101P

 		
 AX25-AE350

 		
 Atmel

 		
 AT91 Evaluation kits

 		
 Coreboot

 		
 Coreboot

 		
 Emulation

 		
 QEMU ARM

 		
 QEMU MIPS

 		
 QEMU RISC-V

 		
 QEMU x86

 		
 Freescale

 		
 B4860QDS

 		
 Google

 		
 Chromebook Coral

 		
 Chromebook Link

 		
 Chromebook Samus

 		
 Intel

 		
 Bayley Bay CRB

 		
 Cherry Hill CRB

 		
 Cougar Canyon 2 CRB

 		
 Crown Bay CRB

 		
 Edison

 		
 Galileo

 		
 Minnowboard MAX

 		
 Slim Bootloader

 		
 Renesas

 		
 R0P7752C00000RZ board

 		
 SH7753 EVB board

 		
 Rockchip

 		
 ROCKCHIP

 		
 SiFive

 		
 HiFive Unleashed

 		
 STMicroelectronics

 		
 STM32MP15x boards

 		
 Toradex

 		
 Apalis iMX8QM V1.0B Module

 		
 Colibri iMX7

 		
 Colibri iMX8QXP V1.0B Module

 		
 Verdin iMX8M Mini Module

 		
 Xilinx

 		
 U-Boot device tree bindings

 		
 ZYNQ

 		
 Android-specific doc

 		
 Android A/B updates

 		
 Overview

 		
 A/B enablement

 		
 Command usage

 		
 References

 		
 Android Verified Boot 2.0

 		
 Overview

 		
 AVB 2.0 U-Boot shell commands

 		
 Partitions tampering (example)

 		
 Enable on your board

 		
 References

 		
 Android Bootloader Control Block (BCB)

 		
 Overview

 		
 â��bcbâ��. Shell command overview

 		
 â��bcbâ��. Example of getting reboot reason

 		
 Enable on your board

 		
 Android Boot Image

 		
 Overview

 		
 Booting

 		
 DTB and DTBO blobs

 		
 C API for working with Android Boot Image format

 		
 References

 		
 FastBoot Version 0.4

 		
 Basic Requirements

 		
 Transport and Framing

 		
 Example Session

 		
 Command Reference

 		
 Client Variables

 		
 Android Fastboot

 		
 Overview

 		
 Client installation

 		
 Board specific

 		
 Fastboot environment variables

 		
 Partition Names

 		
 Writing Partition Table

 		
 In Action

 		
 References

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/ajax-loader.gif

